Possibilities and limitations in miniaturized sensor design for uric acid

(Note: The full text of this document is currently only available in the PDF Version )

Roberto Bravo, ChenChan Hsueh, Anna Brajter-Toth and Alonso Jaramillo


Abstract

Uric acid (UA) has been under intensive investigation by electrochemists owing to its important role as a metabolite in biological fluids. One of the major problems in biological determinations of uric acid comes from electrochemical interferences such as ascorbic acid (AA), which has a similar oxidation potential, E1/2 ≈ 200 mV versus SCE, at graphite electrodes, and is present at high concentrations in biological systems. UA undergoes a 2 H+, 2 e oxidation in aqueous buffers. The oxidation product, a diimine, is an unstable intermediate with a half-life of less than 22 ms. A follow-up hydration reaction converts the diimine to an imine alcohol. Results of previous work show that UA weakly adsorbs and undergoes a fast electron transfer reaction, ks = 54 s–1, at carbon fiber electrodes. These characteristics make UA an excellent candidate for fast scan voltammetric (FSV) determinations. This paper presents the results of FSV at bare carbon fiber electrodes. The results show good selectivity and sensitivity in the determination of low concentrations of UA in the presence of high concentrations of AA. By increasing the scan rate above 500 V s–1, voltammograms of UA in the presence of AA can be resolved because of the kinetic differences in the response of the two anions, without the need for a permselective film on the electrode. Results are also presented that demonstrate an effective way to reach a stable background current at bare carbon fiber electrodes, which is required in FSV because the signal from the analyte is smaller than the electrochemical signal from the background current. Signal-to-noise ratios at bare carbon fiber electrodes in FSV are improved, because the high temporal resolution in fast scan methods allows the acquisition of a large number of scans that can be signal averaged in a short period of time. In addition, large signals can be measured because the voltammetric peak current increases with increase in scan rate.


References

  1. R. G. Martinek, J. Am. Med. Technol., 1970, 32, 233 Search PubMed.
  2. L. V. Star, Hosp. Med., 1995, November, 25 Search PubMed.
  3. H. A. Harper, Review of Physiological Chemistry, Lange Medical Publications, Los Altos, CA, 13th edn., 1977, p. 406 Search PubMed.
  4. R. H. Heptinstall, Gout, in Pathology of the Kidney, Little Brown, Boston, MA, 2nd edn., 1966, p. 495 Search PubMed.
  5. I. H. Krakoff, Arthritis Rheum., 1965, 8, 722.
  6. J. G. Puig and F. A. Mateos, Pharm. World. Sci., 1994, 16, 40 CAS.
  7. P. T. Kissinger, L. A. Pachla, L. D. Reynolds and S. Wright, J. Assoc. Off. Anal. Chem., 1987, 70, 1 Search PubMed.
  8. T. R. Offer, Centr. Physiol., 1894, 8, 801 Search PubMed.
  9. J. V. Pilleggi, J. DiGiorgio and R. D. Wybenga, Clin. Chim. Acta, 1972, 37, 141 CrossRef CAS.
  10. R. Benedict, J. Biol. Chem., 1930, 86, 179.
  11. H. D. Jung and C. A. Parekh, Clin. Chem., 1970, 16, 247 CAS.
  12. N. W. Tietz, Fundamentals of Clinical Chemistry, 2nd edn., Saunders, Philadelphia, 1974, p. 1000 Search PubMed.
  13. B. J. Wyngaarden and N. W. Kelley, Gout and Hyperuricemia, Grune and Stratton, New York, 1976, p. 60 Search PubMed.
  14. B. A. Dilena, M. J. Peake, H. L. Pardue and J. W. Skorg, Clin. Chem., 1986, 32, 486 CAS.
  15. H. Haeckel, Clin. Chim. Acta, 1978, 24, 1846.
  16. T. Watanabe and T. Tatsuma, Anal. Chim. Acta, 1991, 242, 85 CrossRef CAS.
  17. J. J. Kulys, A. S. V. Laurinaricius, V. M. Pesliakiene and V. U. Gureviciene, Anal. Chim. Acta, 1983, 141, 13 CrossRef CAS.
  18. M. A. T. Gilmartin, J. P. Hart and B. Birch, Analyst, 1992, 117, 1299 RSC.
  19. M. A. T. Gilmartin and J. P. Hart, Analyst, 1994, 119, 833 RSC.
  20. M. A. T. Gilmartin, J. P. Hart and B. Birch, Analyst, 1994, 119, 243 RSC.
  21. E. Miland, M. J. A. Ordieres, T. P. Blanco, N. R. Smyth and C. O. Fagain, Talanta, 1996, 43, 785 CrossRef CAS.
  22. F. M. Brand, D. L. McGee and W. D. Kannel, Am. J. Epidemol., 1985, 121, 11 Search PubMed.
  23. V. W. Persky, A. R. Dyer and A. Idris-Sovene, Circulation, 1979, 59, 969 Search PubMed.
  24. D. J. Freedman, D. I. Williamson, W. E. Gunter and T. Byers, Am. J. Epidemol., 1995, 141, 637 Search PubMed.
  25. J. F. Mustard, E. A. Murphy and M. A. Ogryzlo, Can. Med. Assoc. J., 1963, 89, 1207 Search PubMed.
  26. H. Newland, Med. Hypothe., 1975, 1, 152 Search PubMed.
  27. J. M. Carney and W. Cao, Neurosci. Lett., 1988, 88, 233 CrossRef.
  28. A. Patt, A. H. Harken and L. K. Burton, J. Clin. Invest., 1988, 81, 1556 Search PubMed.
  29. E. M. Layton, G. J. Wood, Y. Z. Yan and J. Forster, J. Surg. Res., 1996, 64, 1 CrossRef.
  30. A. D. Mei, J. G. Garrett and K. Nithipatikom, Anal. Biochem., 1996, 238, 34 CrossRef.
  31. L. G. D. Vanwylen, J. T. Schmit, D. R. Lasley, L. R. Gingell and M. R. Mentzer, Am. J. Physiol., 1992, 262, H1934 Search PubMed.
  32. J. Millar, M. Armstrong-James and L. Z. Kruk, Barin Res., 1981, 205, 419 Search PubMed.
  33. M. E. Rice and C. Nicholson, Anal. Chem., 1989, 61, 1805 CrossRef CAS.
  34. J. Stamford, Neurosci. Methods, 1990, 34, 67 Search PubMed.
  35. K. B. Oldham and G. C. Zoski, J. Electroanal. Chem., 1988, 256, 11 CrossRef CAS.
  36. K. B. Oldham, G. C. Zoski, M. A. Bond and T. E. Allinson, Anal. Chem., 1990, 62, 37 CrossRef.
  37. K. B. Oldham, G. C. Zoski, M. A. Bond and D. Luscombe, J. Electroanal. Chem., 1988, 249, 1 CrossRef CAS.
  38. D. J. Wiedemann, A. P. Garris, A. J. Near and M. R. Wightman, J. Pharmacol. Exp. Ther., 1992, 261, 574 Search PubMed.
  39. C. C. Hsueh and A. Brajter-Toth, Anal. Chem., 1993, 65, 1570 CrossRef CAS.
  40. M. R. Wightman, L. J. May and A. C. Michael, Anal. Chem., 1988, 60, 769A CAS.
  41. A. G. Gerhardt, F. A. Oke, G. Nagy, B. Moghaddam and N. R. Adams, Brain Res., 1984, 290, 390 CrossRef CAS.
  42. A. Witkowski and A. Brajter-Toth, Anal. Chem., 1992, 64, 635 CrossRef CAS.
  43. C. C. Hsueh, R. Bravo, A. Jaramillo and A. Brajter-Toth, Anal. Chim. Acta, 1997, 349, 67 CrossRef CAS.
  44. J. Stamford, Trends Neurosci., 1989, 12, 407 CrossRef CAS.
  45. S. P. Cahill, W. D. Walker, M. J. Finnegan, E. G. Mickelson, R. E. Travis and M. R. Wightman, Anal. Chem., 1996, 68, 3180 CrossRef.
  46. C. C. Hsueh and A. Brajter-Toth, Anal. Chim. Acta, 1996, 321, 209 CrossRef CAS.
  47. L. R. McCreery, in Electroanalytical Chemistry, ed. Bard, A. J., Marcel Dekker, New York, 1991, vol. 17, p. 221 Search PubMed.
  48. G. N. Kamau, S. W. Willis and F. Rusling, Anal. Chem., 1985, 57, 545 CrossRef.
  49. R. Kelly and M. R. Wightman, Anal. Chim. Acta, 1986, 187, 79 CrossRef CAS.
  50. M. P. Kovach, R. M. Deakin and M. R. Wightman, J. Phys. Chem., 1986, 90, 4612 CrossRef CAS.
  51. L. R. McCreery and K. K. Cline, in Laboratory Techniques in Electroanalytical Chemistry, ed. Kissinger, T. P., and Heineman, R. W., Marcel Dekker, New York, 1996, p. 323 Search PubMed.
  52. J. Kawaik, J. P. Kulesza and Z. Galus, J. Electroanal. Chem., 1987, 226, 305 CrossRef.
  53. M. Stackelberg, M. Pilgram and V. Toome, Z. Electrochem., 1953, 57, 342 Search PubMed.
  54. D. T. Fagan, I. Hu and T. Kuwana, Anal. Chem., 1985, 57, 2759 CrossRef.
  55. I. Hu, D. H. Karweik and T. Kuwana, Anal. Chem., 1985, 57, 545 CrossRef.
  56. B. Kazee, D. E. Weasshaar and T. Kuwana, Anal. Chem., 1985, 57, 2736 CrossRef CAS.
  57. C. Z. Vavrin, Collect. Czech. Chem. Commun., 1950, 15, 766.
  58. J. A. Bard and R. L. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980 Search PubMed.
  59. F. G. Gonon, C. M. Fombarlet, M. J. Buda and F. J. Pujol, Anal. Chem., 1981, 53, 1386 CrossRef CAS.
  60. E. J. Baur, W. E. Kristensen, J. M. Leslie, J. D. Wiedemann and M. R. Wightman, Anal. Chem., 1988, 60, 1268 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.