Vibrational spectroscopy investigation of Australian cotton cellulose fibres.Part 2. A Fourier transform near-infrared preliminary study†

(Note: The full text of this document is currently only available in the PDF Version )

Yongliang Liu, Serge Kokot and Tryphone J. Sambi


Abstract

Raw naturally coloured and white cotton cellulose fibres were investigated by Fourier transform near-infrared (FT-NIR) spectroscopy and chemometric methods, namely principal component analysis (PCA). In general, the white cotton exhibited bands that could be associated with the structural features of the cotton cellulose polymer. But the FT-NIR spectrum of the green cotton, which is reported for the first time, exhibited a sharp band at 4250 cm1. Further band analysis indicated that green cotton contains a higher C–H content and a lower C–C/C–O and O–H fractions than other natural cotton fibres, suggesting that it has undergone an oxidation process as indicated in the previous FT-Raman spectroscopic study (see Liu, Y., Kokot, S., and Sambi, J., Analyst, 1998, 123, 633). Although the PCA scores plot of FT-NIR spectra of seven types of cotton fibres showed no better separation than that of FT-Raman spectra, it is still possible to differentiate the various types of natural cotton fibres.


References

  1. Y. Liu, S. Kokot and T. J. Sambi, Analyst, 1998, 123, 633 RSC.
  2. S. Ghosh and J. Rodgers, in Handbook of Near-Infrared Analysis, ed. Burns, D. A., and Ciurczak, E. W., Marcel Dekker, New York, 1992, p. 495 Search PubMed.
  3. S. Ghosh, D. Dilanni and T. Ebersole, in Analytical Application of Spectroscopy, ed. Creaser, C. S., and Davis, A. M. C., Royal Society of Chemistry, London, 1988, p. 133 Search PubMed.
  4. T. Malfait and L. Ruys, in Near Infrared Spectroscopy, ed. Hildrum, H. I., Isaksson, T., Naes, T., and Tandberg, A., Ellis Horwood, Chichester, 1992, p. 423 Search PubMed.
  5. J. Rodgers and S. Lee, Text. Res. J., 1991, 61, 531 Search PubMed.
  6. R. A. Taylor, in Leaping Ahead with Near Infrared Spectroscopy, ed. Batten, G. D., Flinn, P. C., Welsh, L. A., and Blakeney, A. B., Impact Printing Pty Ltd, 1995, p. 461 Search PubMed.
  7. S. Ghosh, in Leaping Ahead with Near Infrared Spectroscopy, ed. Batten, G. D., Flinn, P. C., Welsh, L. A., and Blakeney, A. B., Impact Printing Pty Ltd, 1995, p. 451 Search PubMed.
  8. O. M. Kvalheim, SIRIUS (version 2.3), Department of Chemistry, University of Bergen, Bergen, Norway, 1992.
  9. D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte and L. Kaufman, Chemometrics: A Textbook, Elsevier, Amsterdam, 1988 Search PubMed.
  10. A. Thielemans and D. L. Massart, Chimia, 1985, 39, 236 CAS.
  11. Near-infrared Technology in the Agricultural and Food Industries, ed. Williams, P., and Norris, K., American Association of Cereal Chemists, St. Paul, MN, 1990 Search PubMed.
  12. Handbook of near-Infrared Analysis, ed. Burns, D. A., and Ciurczak, E. W., Marcel Dekker, New York, 1992 Search PubMed.
  13. B. G. Osborne, T. Fearn and P. H. Hindle, Practical Near-infrared Spectroscopy with Application in Food and Beverage Analysis, Longman Scientific and Technical, Harlow, 1993 Search PubMed.
  14. Instrumental Analysis of Cotton Cellulose and Modified Cotton Cellulose, ed. O'Connor, R., Marcel Dekker, New York, 1972 Search PubMed.
  15. Chemical Processing of Fibres and Fabrics: Fundamental and Preparation, Part B, ed. Lewin, M., and Sello, S. B., Marcel Dekker, New York, 1984 Search PubMed.
  16. A. J. Varma and V. B. Chavan, Polym. Degrad. Stab., 1995, 49, 245 CrossRef CAS.
  17. C. Q. Yang, Appl. Spectrosc., 1991, 45, 102 CAS.
  18. D. Lin-Vien, N. B. Colthup, W. G. Fately and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Group Frequencies of Organic Molecules, Academic Press, CA, 1991 Search PubMed.
  19. Y. Ootake and S. Kokot, J. Near Infrared Spectrosc., in press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.