Variations in the stable isotope ratios of specific aromatic and aliphatic hydrocarbons from coal conversion processes

(Note: The full text of this document is currently only available in the PDF Version )

Carole McRae, Colin E. Snape and Anthony E. Fallick


Abstract

To establish the scope for applying gas chromatography–isotope ratio mass spectrometry (δ13C GC–IRMS) to molecular recognition problems in coal utilisation, 13C/12C isotope ratios were determined for n-alkanes and polycyclic aromatic hydrocarbons (PAHs) as a function of coal rank and process conditions. Six coals ranging from a lignite to a low volatile bituminous coal were subjected to chloroform extraction, fixed-bed pyrolysis under hydrogen pressure (hydropyrolysis) and fluidised-bed (flash) pyrolysis. No significant variations in the stable isotope ratios of n-alkanes were evident as a function of either rank or conversion regime. In contrast, the isotope ratios of PAHs show large variations with those for hydropyrolysis (–23 to –25‰) being similar to the bulk values of the initial coals and being isotopically heavier (less negative) than their fluidised-bed pyrolysis counterparts by 2–3‰. However, the PAHs from fluidised-bed pyrolysis, which resemble closely those obtained from high temperature coal carbonisation, are still heavier (by 2–3‰) than those from diesel particulates and coal gasification and combustion residues. This provides a firm basis for the source apportionment of airborne PAHs in the proximity of coking plants, particularly with no major variations in the PAH isotope ratios being found as a function of rank.


References

  1. M. Bjoroy, K. Hall and J. Jumeau, Trends Anal. Chem., 1990, 9(10), 331 CrossRef.
  2. K. H. Freeman, J. M. Hayes, J.-M. Trendel and P. Albrecht, Nature (London), 1990, 343, 254 CrossRef CAS.
  3. V. P. O'Malley, T. A. Abrajano, Jr. and J. Hellou, Org. Geochem., 1994, 21, 809 CrossRef CAS.
  4. V. P. O'Malley, R. A. Burke and W. S. Schlotzhauer, Org. Geochem., 1997, 27(7/8), 567 CrossRef CAS.
  5. C. McRae, G. D. Love, I. P. Murray, C. E. Snape and A. E. Fallick, Anal. Commun., 1996, 33, 331 RSC.
  6. T. I. Eglinton, Org. Geochem., 1994, 21, 721 CrossRef CAS other contributions in this special issue of the journal on δ13C GC–IRMS.
  7. B. R. T. Simoneit, M. Schoell, M. Stefanova, G. Stojanova, I. E. Nosyrev and M. Goranova, Fuel, 1995, 74, 1194 CrossRef CAS.
  8. M. Schoell, in Advances in Petroleum Geochemistry, ed. Brooks, J., and Welte, D. H., Academic Press, London, 1984, vol. 1, pp. 215–245 Search PubMed.
  9. J. G. Steer, T. Ohuchi and K. Muehlenbachs, Fuel Process. Technol., 1987, 15, 429 CrossRef CAS.
  10. C. McRae, C. E. Snape and A. E. Fallick, Polycyclic Aromat. Compd., submitted for publication Search PubMed.
  11. O. Sirkecioglu, J. M. Andrésen, C. McRae and C. E. Snape, J. Appl. Polym. Sci., 1997, 66, 663 CrossRef CAS.
  12. P. F. Nelson, I. W. Smith, R. J. Tyler and J. C. Mackie, Energy Fuels, 1988, 2, 391 CrossRef CAS.
  13. M. J. Roberts, C. E. Snape and S. C. Mitchell, in Geochemistry, Characterisation and Conversion of Oil Shales, ed. Snape, C. E., NATO ASI Series, Vol. C455, Kluwer, Dordrecht, 1995, pp. 277–294 Search PubMed.
  14. G. D. Love, C. E. Snape, A. D. Carr and R. C. Houghton, Org. Geochem., 1995, 23(10), 981 CrossRef CAS.
  15. P. A. Eakin, A. E. Fallick and J. Gerc, Chem. Geol., (Isotope Geoscience), 1992, 101, 71 Search PubMed.
  16. G. D. Love, C. E. Snape and A. E. Fallick, Org. Geochem., submitted for publication Search PubMed; Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem., 1995, 403, 443 Search PubMed.
  17. M. M. Maroto-Valer, G. D. Love and C. E. Snape, Energy Fuels, 1997, 11, 539 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.