Determination of the pH difference across a cell membrane using a methylammonium-selective membrane electrode

(Note: The full text of this document is currently only available in the PDF Version )

Takashi Katsu


Abstract

A method was developed for determining pH differences across cell membranes using a methylammonium-selective membrane electrode, based on monitoring of the pH gradient-induced uptake of methylammonium in situ. The methylammonium electrode was constructed using calix[6]arene–hexaacetic acid hexaethyl ester as a neutral carrier and bis(2-ethylhexyl) sebacate as a membrane solvent in a poly(vinyl chloride) membrane matrix. This electrode exhibited a near-Nernstian response to methylammonium in the concentration range 2 × 10–5–1 × 10–2M with a slope of 58 mV per concentration decade in a buffer solution of 150 mM choline chloride–10 mM TRIS–HCl (pH 7.5). The limit of detection was 5 × 10–6M. In experiments using liposomes, the uptake of methylammonium into liposomes occurred effectively when the pH of the outside suspension medium was alkaline, and the determination of changes in methylammonium concentrations in the outer medium was quantitatively related to changes in the pH differences across the liposomal membrane. The transmembrane pH differences in Escherichia coli cells were also determined by this method.


References

  1. H. Rottenberg, Methods Enzymol., 1979, 55, 547 CAS.
  2. A. Roos and W. F. Boron, Physiol. Rev., 1981, 61, 296 Search PubMed.
  3. G. F. Azzone, D. Pietrobon and M. Zoratti, Curr. Top. Bioenerg., 1984, 13, 1 Search PubMed.
  4. H. Rottenberg, Methods. Enzymol., 1989, 172, 63 CAS.
  5. T. Katsu, D. Xu, K. Tsuji and T. Nagamatsu, Anal. Chim. Acta, 1997, 354, 301 CrossRef CAS.
  6. G. G. Guilbault, Ion-Sel. Electrode Rev., 1979, 1, 139 Search PubMed.
  7. T. Katsu and Y. Mori, Anal. Chim. Acta, 1997, 343, 79 CrossRef CAS.
  8. T. Katsu, Anal. Chem., 1993, 65, 176 CrossRef CAS.
  9. T. Katsu, H. Kobayashi and Y. Fujita, Biochim. Biophys. Acta, 1986, 860, 608 CrossRef CAS.
  10. A. I. Vistnes and J. S. Puskin, Biochim. Biophys. Acta, 1981, 644, 244 CrossRef CAS.
  11. Y. Kirino and T. Ozawa, Essence ESR, Hirokawa, Tokyo, 1991, pp. 75–87 Search PubMed.
  12. T. Shimamoto, K. Inaba, P. Thelen, T. Ishikawa, E. B. Goldberg, M. Tsuda and T. Tsuchiya, J. Biochem., 1994, 116, 285 CAS.
  13. K. Yamasaki, Y. Moriyama, M. Futai and T. Tsuchiya, FEBS Lett., 1980, 120, 125 CrossRef CAS.
  14. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 1951, 193, 265 CAS.
  15. E. Padan, D. Zilberstein and H. Rottenberg, Eur. J. Biochem., 1976, 63, 533 CAS.
  16. J. L. Slonczewski, B. P. Rosen, J. R. Alger and R. M. Macnab, Proc. Natl. Acad. Sci. USA, 1981, 78, 6271 CAS.
  17. S. Shiota, Y. Yamane, M. Futai and T. Tsuchiya, J. Bacteriol., 1985, 162, 106 CAS.
  18. T. Katsu, M. Kuroko, T. Morikawa, K. Sanchika, Y. Fujita, H. Yamamura and M. Uda, Biochim. Biophys. Acta, 1989, 983, 135 CAS.
  19. D. W. Deamer and J. Gutknecht, Methods Enzymol., 1986, 127, 471 CAS.
  20. A. Blume, Methods Enzymol., 1986, 127, 480 CAS.
  21. D. S. Cafiso, Methods Enzymol., 1986, 127, 502 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.