Bioligand interaction assay by flow injection absorptiometry using a renewable biosensor system enhanced by spectral resolution

(Note: The full text of this document is currently only available in the PDF Version )

J. Ruzicka


Abstract

Conventional biosensors , such as those based on surface plasmon resonance, lack spectral resolution and employ a permanent sensing layer that needs to be activated and also regenerated after use. In contrast, scanning of the UV/VIS spectrum of agarose beads, trapped in a specially designed flow cell, allows real time monitoring of labeled and unlabeled biomolecules, with spectral resolution, on a surface that can be automatically renewed, by microfluidic manipulation. Agarose beads are identical with column materials used in affinity chromatography and therefore are readily available, derivatized with a wide choice of bioligands. In this way, flow injection absorptiometry on renewable surfaces provides a basis for a new class of biosensors with ‘open architecture’ that allows the development of novel types of immunoassays employing both unlabeled and labeled molecules. The method also has interesting implications for affinity chromatography, because it uses identical materials and investigates the same type of bioligand interactions. An improved configuration of the jet ring cell is introduced and it is shown that both large (IgG) and small molecules (biotin) can be detected down to the 25 ng level reproducibly and rapidly.


References

  1. U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståhlberg, C. Urbaniczky, H. Östlin and M. Malmquist, BioTechniques, 1991, 11(5), 620 Search PubMed.
  2. R. Karlsson, Anal. Biochem., 1994, 221, 142 CrossRef CAS.
  3. S. Sjölander and C. Urbaniczky, Anal. Chem., 1991, 63, 2338 CrossRef CAS.
  4. U. Jönsson, I. Rönnberg and M. Malmquist, Colloids Surf. A, 1985, 13, 333.
  5. U. Jonsson and M. Malmquist, Adv. Biosens., 1992, 2, 291 Search PubMed.
  6. www.biacore.com/scientific/reflist.html and www.biacore.com/products/sensor.html.
  7. B. Johnsson, S. Lofas and G. Linquist, Anal. Biochem., 1991, 198, 268 CrossRef CAS.
  8. R. Karsson, A. Michaelsson and L. Mattson, J. Immunol. Methods, 1991, 145, 229 CrossRef CAS.
  9. S. Lofas, M. Magnus, I. Ronnberg, B. Liedberg and I. Lundstrom, Sens. Actuators B, 1991, 5, 79 CrossRef.
  10. R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube and H. Pedersen, Anal. Chem., 1997, 69, 4649 CrossRef CAS.
  11. R. Karlsson and R. Stahlberg, Anal. Biochem., 1995, 228, 274 CrossRef CAS.
  12. J. Piehler, A. Brecht and G. Gauglitz, Anal. Chem., 1996, 68, 139.
  13. J. Ruzicka and A. Ivaska, Anal. Chem., 1997, 69, 5024 CrossRef CAS.
  14. Biomolecule Chromatography, PerSeptive Biosystems, Farmingham, MA, 1996 Search PubMed.
  15. BIAtechnology Handbook, Pharmacia Biosensor, Uppsala, 1994 Search PubMed.
  16. BIAcore X, Publication BR-9000 75, Pharmacia Biosensor, Uppsala, 1996 Search PubMed.
  17. D. Savage et al., Avidin–Biotin Chemistry. A Handbook. Pierce, Rockford, IL, 1994 Search PubMed.
  18. G. T. Hermanson, A. K. Mallia and P. K. Smith, Immobilized Affinity Ligand Techniques, Academic Press, New York, 1992 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.