Multi-electrode detection in voltammetryPart 2.† Evaluation of a Hadamard multiplexed voltammetric technique

(Note: The full text of this document is currently only available in the PDF Version )

Jarbas J. R. Rohwedder and Celio Pasquini


Abstract

A multiplex approach has been evaluated to obtain individual voltammetric signals coming from an array of independent microelectrodes. The multiplex design employs S matrices and the Hadamard transform to recover the signals for each electrode. Two pulse like voltammetric techniques, resembling the conventional normal pulse and differential pulse techniques, have been employed to generate the multiplexed currents. An array of 31 microelectrodes has been employed and the signal-to-noise ratio (S/N) obtained for the measurements presented a gain that is close to the 2.78 value predicted by the multiplex design. However, the reduction in the time interval spent for data acquisition was not 16, as predicted but 3 times. The increase in the data acquisition time for the multiplexed reading is a consequence of the pulse techniques employed. These techniques cause depletion of the electroactive specimen near the electrode surface. To overcome this problem a resting potential of 100 ms and a false multiplexed pre-scan must be employed. The gain in the S/N obtained allows for a three times enhancement in the detection limit for PbII determination when compared to the same non-multiplexed technique.


References

  1. W. L. Caudill, J. O. Howell and R. M. Wightman, Anal. Chem., 1982, 54, 2532 CrossRef CAS.
  2. W. E. Strohben, D. K. Smith and D. H. Evans, Anal. Chem., 1990, 62, 1709 CrossRef CAS.
  3. M. Deabreu and W. C. Purdy, Anal. Chem., 1987, 59, 204 CrossRef CAS.
  4. L. J. Magge, Jr. and J. Osteryoung, Anal. Chem., 1989, 61, 2124 CrossRef.
  5. D. M. Odell and W. J. Bowyer, Anal. Chem., 1990, 62, 1619 CrossRef CAS.
  6. D. G. Sanderson and L. B. Anderson, Anal. Chem., 1985, 57, 2388 CrossRef CAS.
  7. J. L. Anderson, T. Y. Ou and S. Moldoveanu, J. Electroanal. Chem., 1985, 196, 213 CrossRef CAS.
  8. A. Aoki, T. Matsue and I. Uchida, Anal. Chem., 1990, 62, 2206 CrossRef CAS.
  9. T. H. Brearley, A. K. Doshi and P. R. Fielden, Anal. Proc., 1989, 26, 389 Search PubMed.
  10. J. C. Hoogvliet, J. M. Reijn and W. P. van Bennekom, Anal. Chem., 1991, 63, 2418 CrossRef CAS.
  11. P. R. Fielden and T. McCreedy, Anal. Chim. Acta, 1993, 273, 111 CrossRef CAS.
  12. D. W. Dees and C. W. Tobias, J. Electrochem. Soc., 1987, 134, 369 CAS.
  13. T. Matsue, A. Aoki, E. Ando and I. Uchida, Anal. Chem., 1990, 62, 407 CrossRef CAS.
  14. A. Aoki, T. Matsue and I. Uchida, Anal. Chem., 1992, 64, 44 CrossRef CAS.
  15. R. M. Wightman, Anal. Chem., 1981, 53, 1125A CrossRef CAS.
  16. A. M. Bond, Analyst, 1994, 119, R1 RSC.
  17. Z. Stojek, Mikrochim. Acta, 1991, II, 353.
  18. H. J. Huang, P. He and L. R. Faulkner, Anal. Chem., 1986, 58, 2889 CrossRef CAS.
  19. P. J. Treado and M. D. Morris, Anal. Chem., 1989, 61, 723A CAS.
  20. J. J. R Rohwedder and C. Pasquini, Analyst, 1998, 123, 1641 RSC.
  21. W. K. Busch and M. A. Busch, in Multielement Detection Systems for Spectrochemical Analysis, ed. Winefordner, J. D., Wiley, New York, 1990, vol. 107, p. 170 Search PubMed.
  22. R. N. Ibbett, D. Aspinall and J. F. Grainger, Appl. Opt., 1968, 7, 1089.
  23. E. D. Nelson and M. L. Freedman, J. Opt. Soc. Am., 1970, 60, 1664 Search PubMed.
  24. R. J. Foster, F. Regan and D. Diamond, Anal. Chem., 1991, 63, 876 CrossRef.
  25. J. M. Slater, J. Paynter and E. J. Watt, Analyst, 1993, 118, 379 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.