Development of a method for the determination of low contents of asbestos fibres in bulk material

(Note: The full text of this document is currently only available in the PDF Version )

Thomas Schneider, Ole Jørgensen, Laurie S. T. Davies, Duncan Buchanan, Garry Burdett, Jan Tempelman, Salvatore Puledda and Luigi Paoletti


Abstract

Asbestos is a category 1 carcinogen under the EU classification, but in the absence of a method to quantify asbestos in a matrix at the 0.1% level, there has been a delay in implementing relevant directives to asbestos. An analytical scheme for identification and quantification of asbestos using polarised light microscopy (PLM) and phase contrast optical microscopy (PCM) has now been developed. When used on artificial mixtures by an experienced laboratory, it achieved the required target performance, at 0.1% asbestos concentration by mass in a bulk sample, to obtain a result, which with 90% probability, is correct within a factor of two. The method of identification by PLM and quantification by PCM has been assessed by interlaboratory comparisons. The method begins with an initial identification using PLM, and depending on asbestos type and matrix a combination of preparation procedures are used to produce the analytical filter. A gentle comminution method was used which reduces the risk of overmilling. The asbestos mass percentage on the filter is quantified using PCM in combination with a PLM attachment for identification of possible non-asbestos fibres. The final method is supported by efficient methods for fibre identification for size determination and calculation of total fibre volume. A statistical analysis of mass concentration estimates was made and the effect of preferred orientation of fibres on the analytical filter was quantified.


References

  1. Ambient Air—Determination of Asbestos Fibres—Direct Transfer Transmission Electron Microscopy Method. International Standards Organisation ISO DP10312: 1995 Search PubMed.
  2. T. Schneider, L. S. T. Davies, G. Burdett, J. Tempelman, S. Puledda, O. Jørgensen, D. Buchanan and L. Paoletti, Development of a Method for the Determination of Low Contents of Fibres in Bulk Material. European Community Contract No MAT1-CT93-0003. Final report. National Institute of Occupational Health, Copenhagen, Denmark, 1997 Search PubMed.
  3. G. Burdett, Identification of Asbestos in Bulk Materials by Polarised Light Microscopy (PLM). Final report January 1996(minor revision 7/ 1997), Health and Safety Laboratory, Broad Lane, Sheffield S3 7HQ, UK, 1997 Search PubMed.
  4. NIOSH, NIOSH Manual of Analytical Methods. US Department of Health and Human Services, National Institute for Occupational Health, Cincinnati, OH, USA, 4th edn., 1994 Search PubMed.
  5. T. Schneider, Staub Reinhalt. Luft, 1992, 52, 201 Search PubMed.
  6. T. Schneider, S. A. Sethi, L. S. T. Davies, G. Burdett and O. Jørgensen, J. Aerosol. Sci., 1997, 28, Suppl 1, S611 CrossRef.
  7. L. S. T. Davies, D. Buchanan and C. McIntosh, 1998, to be submitted.
  8. BS 5309: part 4: 1976. Methods for Sampling Chemical Products. Part 4. Sampling of Solids. British Standards Institution, London, UK, 1996.
  9. J. Addison and L. S. T. Davies, Ann. Occup. Hyg., 1990, 34, 159 CAS.
  10. S. Puledda and L. Paoletti, Ann. Occup. Hyg., 1994, 38, 59 CAS.
  11. L. Lundgren, S. Lundström, G. Sundström, G. Bergmann and S. Krantz, Ann. Occup. Hyg., 1996, 40, 197 CrossRef CAS.
  12. Ambient air—Determination of Asbestos Fibres Indirect Transfer Transmission Electron Microscopy Method. International Standards Organisation, ISO 13794: 1997 Search PubMed.
  13. WHO, Determination of Airborne Fibre Number Concentrations. A Recommended Method by Phase Contrast Microscopy (Membrane Filter Method), World Health Organisation, Geneva, Switzerland, 1996 Search PubMed.
  14. D. J. Finney, Suppl. J. R. Stat. Soc., 1941, 7, 155 Search PubMed.
  15. E. S. Larsen and H. Berman, The Microscopic Determination of Nonopaque Minerals. United States Department of Interior, Geological Survey Bulletin 848, US Government Printing Office, Washington, DC, USA, 1934 Search PubMed.
  16. W. A. Deer, R. A. Howie and J. Zussman, An Introduction to the Rock Forming Minerals, Longmans, London, 1966 Search PubMed.
  17. W. E. Tröger, Optische Bestimmung der Gesteinbildenden Minerale, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1982 Search PubMed.
  18. J. W. Kelse and C. S. Thompson, Am. Ind. Hyg. Assoc. J., 1989, 50, 613 CrossRef.
  19. A. G. Wylie, Ann. N. Y. Acad. Sci., 1983, 105.
  20. A. G. Wylie, Discriminating Amphibole Cleavage Fragments from Asbestos: Rationale and Methodology Proceedings VII Pneumoconiosis Conference (Pittsburgh, Pennsylvania, USA, 23–26 August 1988), DHHS (NIOSH), Cincinnati, OH, USA, Publication No. 90-108, part II, November 1990, pp. 1065–1069 Search PubMed.
  21. F. D. Pooley and N. J. Clark, Ann. Occup. Hyg., 1979, 22, 253 CAS.
  22. T. Schneider, J. Aerosol. Sci., 1993, 24, 963 CrossRef CAS.
  23. T. Schneider and E. Holst, J. Aerosol. Sci., 1995, 26, 127 CrossRef CAS.
  24. Commission Directive 67/89/EC of 5 December 1997, adaptation to Technical Progress of Directive 67/548/EEC. Official Journal of the European Communities, L343/19.
  25. N. P. Crawford, P. Brown and A. J. Cowie, Ann. Occup. Hyg., 1992, 36, 59 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.