Use of affinity capillary electrophoresis for the study of protein and drug interactions

(Note: The full text of this document is currently only available in the PDF Version )

Jinping Liu, Mark E. Hail, Mike S. Lee, Sadia Abid, Jon Hangeland and Nada Zein


Abstract

Protein–drug interactions were studied using affinity capillary electrophoresis (ACE). The initial study was performed using a model system, fibronectin–heparin interaction. Two distinct binding constants, 21 and 641 nM, were derived from the Scatchard plots. The results are consistent with reported data obtained using other analytical techniques. The ACE binding assay was applied for studying molecular interactions between kedarcidin chromophore and apoprotein. Conditions with an organic solvent as buffer component were examined to establish a suitable binding assay. It appears that the electrophoretic behavior of the protein shows little distortion in the presence of either dimethyl sulfoxide (up to 10%) or acetonitrile (ACN) (up to 30%). The binding assay was initially conducted in aqueous buffer phase. The saturation concentration of chomophore was found to be around 15 µM. A linear Scatchard plot was derived from binding data with a correlation coefficient of 0.94. The binding constant was determined as Kd = 5.6 µM. The effects of organic solvent content ranging from 0 to 30% ACN on the constant were examined. The binding constants were determined as Kd = 11, 12.5 and 16.2 µM for 5, 10 and 30% ACN, respectively. It appeared that the binding affinity between kedarcidin chromophore and apoprotein is reduced as the organic solvent content in the aqueous phase is increased.


References

  1. Y.-H. Chu, L. Z. Avila, H. A. Biebuyck and G. M. Whitesides, J. Med. Chem., 1992, 35, 2915 CrossRef CAS.
  2. Y.-H. Chu, L. Z. Avila, H. A. Biebuyck and G. M. Whitesides, J. Org. Chem., 1993, 58, 648 CrossRef CAS.
  3. L. Z. Avila, Y.-H. Chu, E. C. Blossey and G. M. Whitesides, J. Med. Chem., 1993, 36, 126 CrossRef CAS.
  4. N. H. H. Heegaard and F. A. Robey, Anal. Chem., 1992, 64, 2479 CrossRef CAS.
  5. J. C. Kraak, S. Busch and H. Poppe, J. Chromatogr., 1992, 608, 257 CrossRef CAS.
  6. N. H. H. Heegaard and F. A. Robey, J. Liq. Chromatogr., 1993, 16, 1923 CAS.
  7. J. Liu, K. J. Vol, M. S. Lee, E. H. Kerns and I. E. Rosenberg, J. Chromatogr., 1994, 680, 395 CrossRef CAS.
  8. J. Liu, K. J. Volk, M. S. Lee, M. J. Pucci and S. Handwerger, Anal. Chem., 1994, 66, 2412 CrossRef CAS.
  9. M. Mammen, F. A. Gomez and G. M. Whitesides, Anal. Chem., 1995, 67, 3526 CrossRef CAS.
  10. T. Ohara, A. Shibukawa and T. Nakagawa, Anal. Chem., 1995, 67, 3520 CrossRef CAS.
  11. J. Xian, M. G. Harrington and E. H. Davidson, Proc. Natl. Acad. Sci. USA, 1996, 93, 86 CrossRef CAS.
  12. Y.-H. Chu, Y. M. Dunayevskiy, D. P. Kirby, P. Vouros and B. L. Karger, J. Am. Chem. Soc., 1996, 118, 7827 CrossRef CAS.
  13. J. E. Lee, D. R. Schroeder, S. J. Hofstead, J. Golik, K. L. Colson, S. Huang, S. E. Klohr, T. W. Doyle and J. A. Matson, J. Am Chem. Soc., 1992, 114, 7946 CrossRef CAS.
  14. J. E. Lee, D. R. Schroeder, D. R. Langley, K. L. Colson, S. Huang, S. E. Klohr, M. S. Lee, J. Golik, S. J. Hofstead, T. W. Doyle and J. A. Matson, J. Am. Chem. Soc., 1993, 115, 8432 CrossRef CAS.
  15. M. S. Lee, S. E. Klohr, E. H. Kerns, K. J. Volk, J. E. Lee, D. R. Schroeder and I. E. Rosenberg, Biol. Mass Spectrom., 1996, 31, 1253 CrossRef CAS.
  16. N. Zein, K. L. Colson, J. E. Leet, D. R. Schroeder, W. Solomon, T. W. Doyle and A. M. Casazza, Proc. Natl. Acad. Sci. USA, 1993, 90, 2822 CAS.
  17. N. Zein, A. M. Casazza, T. W. Doyle, J. E. Leet, D. R. Schroeder, W. Solomon and S. G. Nadler, Proc. Natl. Acad. Sci. USA, 1993, 90, 8009 CAS.
  18. M. K. Lee and A. D. Lander, Proc. Natl. Acad. Sci. USA, 1991, 88, 2768 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.