Optimization of confocal epifluorescence microscopy for microchip-based miniaturized total analysis systems

(Note: The full text of this document is currently only available in the PDF Version )

Gregor Ocvirk, Thompson Tang and D. Jed Harrison


Abstract

A confocal epifluorescence detection scheme, optimized to give sub-picomolar detection within planar glass substrates etched to a 30 µm depth, is described. A ×40, 0.6 numerical aperture (N.A.) lens with a 3.7 mm working distance was used to create a focused laser spot about 12 µm in diameter, by under-filling the lens aperture to give an effective, measured N.A. of 0.22 for the laser beam. The sectioning power (optical axis field of view) of various pinholes and the corresponding detector probe volumes (overlap of the excitation and observation volumes) were: (pinhole diameter, sectioning power, probe volume): 100 µm, 18 µm, 0.1 pl; 200 µm, 20 µm, 0.4 pl; 400 µm, 26 µm, 1.7 pl; and 600 µm, 36 µm, 2.4 pl. A log–log plot of fluorescence intensity versus fluorescein concentration, measured in continuous-flow mode using the optimum 400 µm pinhole, showed a correlation coefficient of 0.996 and a slope of 0.85. In this mode, 300 fM fluorescein gave a signal of 34.6 ± 8.1 mV over background with an S/N of 6.1, representing the lowest measured fluorescein dye concentration reported on-chip. Capillary zone electrophoresis of 1 pM fluorescein resulted in a mean S/N of 5.8. The injection plug, estimated to be about 5470 molecules, corresponds to 570 detected molecules on average. The design and use of quick-fit, flangeless fittings for interfacing tubing, fused-silica capillaries or pressurized systems to microfluidic channels etched in planar glass chips is briefly presented.


References

  1. D. J. Harrison, K. Fluri, N. Chiem, T. Tang and Z. Fan, Digest of Technical Papers, Transducers 95, The 8th International Conference on Solid-State Sensors and Actuators—Eurosensors IX, June 25–29, 1995, Stockholm, Sweden, Royal Swedish Academy of Engineering Sciences, Stockholm, 1995, pp. 752–755 Search PubMed .
  2. D. J. Harrison and N. Chiem, Technical Digest, Solid State Sensor Actuator Workshop, Hilton Head Island, SC, June 3–6, 1996, Transducers Research Foundation, Cleveland Heights, OH, 1996, pp. 5–8 Search PubMed .
  3. L. B. Koutny, D. Schmalzing, T. A. Taylor and M. Fuchs, Anal. Chem., 1996, 68, 18 CrossRef CAS .
  4. F. Vonheeren, E. Verpoorte, A. Manz and W. Thormann, Anal. Chem., 1996, 68, 2044 CrossRef CAS .
  5. N. Chiem and D. J. Harrison, Anal. Chem., 1997, 69, 373 CrossRef CAS .
  6. A. T. Woolley and R. A. Mathies, Anal. Chem., 1995, 67, 3676 CrossRef CAS .
  7. S. C. Jacobson and J. M. Ramsey, Anal. Chem., 1996, 68, 720 CrossRef CAS .
  8. Y. F. Cheng and N. J. Dovichi, Science, 1988, 242, 562 CrossRef CAS .
  9. K. Seiler, D. J. Harrison and A. Manz, Anal. Chem., 1993, 65, 1481 CrossRef CAS .
  10. C. S. Effenhauser, A. Manz and H. M. Widmer, Anal. Chem., 1993, 65, 2637 CrossRef CAS .
  11. S. C. Jacobson, R. Hergenroeder, A. W. Moore and J. M. Ramsey, Anal. Chem., 1994, 66, 4127 CrossRef CAS .
  12. Z. H. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri and D. J. Harrison, Anal. Chem., 1996, 68, 1040 CrossRef .
  13. D. C. Nguyen, R. A. Keller, J. H. Jett and J. C. Martin, Anal. Chem., 1987, 59, 2158 CrossRef .
  14. J. Hahn Hoon, S. A. Soper, H. L. Nutter, J. C. Martin, J. H. Jett and R. A. Keller, Appl. Spectrosc., 1991, 45, 743 .
  15. D. Y. Chen, K. Adelhelm, X. L. Cheng and N. J. Dovichi, Analyst, 1994, 119, 349 RSC .
  16. X. C. Huang, M. A. Quesada and R. A. Mathies, Anal. Chem., 1992, 64, 2149 CrossRef CAS .
  17. R. A. Mathies, J. R. Scherer and M. A. Quesada, Rev. Sci. Instrum., 1994, 65, 807 CrossRef CAS .
  18. L. Hernandez, J. Escalona, N. Joshi and N. Guzman, J. Chromatogr., 1991, 559, 183 CrossRef CAS .
  19. S. C. Beale and S. J. Sudmeier, Anal. Chem., 1995, 67, 3367 CrossRef CAS .
  20. S. Nie, D. T. Chiu and R. N. Zare, Science, 1994, 266, 1018 CrossRef CAS .
  21. B. B. Haab and R. A. Mathies, Anal. Chem., 1995, 67, 3253 CrossRef CAS .
  22. A. Castro and E. B. Shera, Appl. Opt., 1995, 34, 3218 CAS .
  23. C. S. Effenhauser, G. J. M. Bruin, A. Paulus and M. Ehrat, Anal. Chem., 1997, 69, 3451 CrossRef CAS .
  24. M. D. Barnes, W. B. Whitten and J. M. Ramsey, Anal. Chem., 1995, 67, 418A CAS .
  25. G. J. Brakenhoff, K. Visscher and H. T. M. van der Voort, in Handbook of Biological Confocal Microscopy, ed. Pawley, J. B., Plenum Press, New York, 1990, pp. 87–91 Search PubMed .
  26. D. J. Harrison, A. Manz, Z. H. Fan, H. Luedi and H. M. Widmer, Anal. Chem., 1992, 64, 1926 CrossRef .
  27. Z. Fan and D. J. Harrison, Anal. Chem., 1994, 66, 177 CrossRef CAS .
  28. K. Seiler, Z. Fan, K. Fluri and D. J. Harrison, Anal. Chem., 1994, 66, 3485 CrossRef CAS .
  29. L. Hernandez, R. Marquina, J. Escalona and N. A. Guzman, J. Chromatogr., 1990, 502, 247 CrossRef CAS .
  30. T. Wilson, in Handbook of Biological Confocal Microscopy, ed. Pawley, J. B., Plenum Press, New York, 1990, pp. 113–126 Search PubMed .
  31. T. Wilson, J. Microscopy, 1989, 154, 143 Search PubMed .
  32. R. A. Mathies, K. Peck and L. Stryer, Anal. Chem., 1990, 62, 1786 CrossRef CAS .
  33. J. D. Ingle and R. L. Wilson, Anal. Chem., 1976, 48, 1641 CrossRef CAS .
  34. A. G. Hadd, D. E. Raymond, J. W. Halliwell, S. Jacobson and J. M. Ramsey, Anal. Chem, 1997, 69, 3407 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.