Sensitive reversed-phase liquid chromatographic determination of fluoride based on its ternary systems with zirconium(IV) or hafnium(IV) and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol

(Note: The full text of this document is currently only available in the PDF Version )

Sławomir Oszwałdowski, Robert Lipka, Maciej Jarosz and Tadeusz Majewski


Abstract

Optimum conditions for the direct reversed-phase LC determination of fluoride based on the ternary M–F–(5-Br-PADAP) complexes [M = ZrIV or HfIV and 5-Br-PADAP = 2-(5-bromo-2-pyridylazo)- 5-diethylaminophenol] were evaluated. Chromatographic separation was performed with C18 end-capped column with an eluent consisting of acetonitrile–water (85 +15 v/v) mixture of pH 4.0 ± 0.3 (flow rate 1 ml min–1), and the eluate was monitored spectrophotometrically at λmax = 585 nm. The calibration curves were linear over a wide range of fluoride concentrations: from 1 to 110 and 150 ng ml–1 for the ZrIV–F–(5-Br-PADAP) and HfIV–F–(5-Br-PADAP) systems, respectively (using a 20 µl loop). Under such conditions the detection limits were 0.8 and 0.7 ng ml–1, respectively, and the quantification limit is 1.0 ng ml–1 for both methods. When a 100 µl loop was used, the limits of both detection and quantification in the method based on the zirconium system were 0.2 ng ml–1. Using the proposed method, fluoride was determined directly in tap water, saliva and an anti-cancer agent for prostatic cancer (Leuprolid).


References

  1. Z. Marczenko, Separation and Spectrophotometric Determination of Elements, Ellis Horwood, Chichester, 1987 Search PubMed.
  2. A. D. Campbell, Pure Appl. Chem., 1987, 59, 695 CAS.
  3. C. P. McCarthy, R. W. Klusman, S. W. Cowling and J. A. Rice, Anal. Chem., 1995, 67, 525R.
  4. A. Yuchi, N. Hokari, H. Wada and G. Nakagawa, Analyst, 1993, 118, 219 RSC.
  5. R. Belcher and T. M. West, Talanta, 1961, 8, 853 CrossRef CAS.
  6. I. V. Pyatnitskii and S. G. Pinaeva, Zh. Anal. Khim., 1983, 38, 1014 Search PubMed.
  7. V. P. Dedkova and S. B. Savvin, Zh. Anal. Khim., 1984, 39, 2064 Search PubMed.
  8. P. Doble, P. Andersson and P. R. Haddad, J. Chromatogr. A, 1997, 770, 291 CrossRef CAS.
  9. A. K. Harakuwe and P. R. Haddad, J. Chromatogr. A, 1996, 734, 416 CrossRef CAS.
  10. A. K. Harakuwe and P. R. Haddad, Anal. Commun., 1997, 34, 67 RSC.
  11. A. L. Medved' and A. A. Ivanov, Zh. Anal. Khim., 1997, 52, 732 Search PubMed.
  12. H. Kumagai, I. Tajima, T. Sakai and Y. Inoue, Anal. Sci., 1995, 11, 995 CAS.
  13. L. V. Epimakhova and N. V. Voronina, Zh. Anal. Khim., 1997, 52, 737 Search PubMed.
  14. Y. S. Fung and W. M. Tam, Anal. Chim. Acta, 1996, 326, 67 CrossRef CAS.
  15. S. Oszwałdowski, Analyst, 1995, 120, 1751 RSC.
  16. S. Oszwałdowski and M. Jarosz, Mikrochim. Acta, 1997, 126, 241 CAS.
  17. S. Oszwałdowski and M. Jarosz, Chem. Anal. (Warsaw), 1997, 42, 739 Search PubMed.
  18. A. Lyčka and J. Pelnař, Dyes Pigm., 1994, 25, 79 CrossRef CAS.
  19. A. Šmidovnik, A. G. Wondra and M. Prošek, J. High Resolut. Chromatogr., 1997, 20, 503 CAS.
  20. Y. Zhao and C. Fu, Anal. Chim. Acta, 1990, 230, 23 CrossRef CAS.
  21. J. Miura, Fresenius' J. Anal. Chem., 1992, 344, 247 CrossRef CAS.
  22. S. L. C. Ferreira, M. L. S. F. Bandeira, V. A. Lemos, H. C. dos Santos, A. C. Spinola Costa and D. S. de Jesus, Fresenius' J. Anal. Chem., 1997, 357, 1174 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.