Piezoelectric mechanical pump with nanoliter per minute pulse-free flow delivery for pressure pumping in micro-channels

(Note: The full text of this document is currently only available in the PDF Version )

Satyajit Kar, Scott McWhorter, Sean M. Ford and Steven A. Soper


Abstract

A novel computer-controlled mechanical syringe pump is described which uses a piezoelectric actuator and a pivoted lever for amplification of the linear displacement of the piezo-actuator to deliver solvents free from pump pulsations at volumetric flow rates approaching 1 nl min–1 even at high loading levels (high output pressures). The flow patterns can be programmed by controlling the voltage waveform to the piezo-actuator to produce a linear displacement of 72 µm. By using the pivoted lever, a ninefold amplification of the piezo-expansion was achieved producing a total linear displacement of 648 µm. When a gas-tight glass syringe of 1.0 mm diameter was interfaced to the piezo-pump, the total volume delivered in a single pump stroke was 511 nl. Whereas the pumping profile was governed by the expansion behavior of the piezoelectric actuator, the flow rate was also slightly affected by the loading pressure on the pump as well. The piezo-pump was found to deliver adequately a stable flow of solutions with loading pressures as high as 3.79 × 105 Pa (actual loading pressure at the piezo-actuator = 3.41 × 106 Pa). Monitoring the flow stability using fluorescence indicated that the volume flow was fairly noise free at pumping rates from 4 to 150 nl min–1. Below a volume flow rate of 4 nl min–1, the pump exhibited extensive noise characteristics due to the step resolution of the DAC driving the piezo-actuator. A diffuser–nozzle system was fabricated which allowed automatic refilling of the syringe pump and was micromachined into Plexiglas (PMMA) using X-ray lithography. The diffuser–nozzle system contained channels that were 50 µm in depth and tapered from 300 to 30 µm. The diffuser–nozzle system was interfaced to the syringe pump by connecting conventional capillary tubes to the PMMA-based diffuser–nozzle, the piezo-pump and the chemical analysis system.


References

  1. L. D. Rothman, Anal. Chem., 1996, 68, 587R CrossRef.
  2. C. E. Lunte, D. O. Scott and P. T. Kessinger, Anal. Chem., 1991, 63, 773A CAS.
  3. D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser and A. Manz, Science, 1993, 261, 895 CrossRef CAS.
  4. C. S. Effenhauser, A. Manz and H. M. Widmer, Anal. Chem., 1993, 65, 2637 CrossRef CAS.
  5. D. J. Harrison, P. G. Glavina and A. Manz, Sens. Actuators B, 1993, 10, 107 CrossRef.
  6. Z. H. Fan and D. J. Harrison, Anal. Chem., 1994, 66, 177 CrossRef CAS.
  7. S. C. Jacobson, R. Hergenroder, L. B. Koutny, R. J. Warmack and J. M. Ramsey, Anal. Chem., 1994, 66, 1107 CrossRef CAS.
  8. S. C. Jacobson, R. Hergenroder, L. B. Koutny and J. M. Ramsey, Anal. Chem., 1994, 66, 1114 CrossRef CAS.
  9. C. S. Effenhouser, A. Paulus, A. Manz and H. M. Widmer, Anal. Chem., 1994, 66, 2949 CrossRef CAS.
  10. S. C. Jacobson, L. B. Koutny, R. Hergenroder, A. W. Moore and J. M. Ramsey, Anal. Chem., 1994, 66, 3472 CrossRef CAS.
  11. K. Seiler, Z. H. Fan, K. Fluri and D. J. Harrison, Anal. Chem., 1994, 66, 3485 CrossRef CAS.
  12. A. T. Woolley and R. A. Mathies, Proc. Natl. Acad. Sci. USA, 1994, 91, 11 348 CAS.
  13. S. C. Jacobson, A. W. Moore and J. M. Ramsey, Anal. Chem., 1995, 67, 2059 CrossRef CAS.
  14. C. S. Effenhauser, A. Manz and H. M. Widmer, Anal. Chem., 1995, 67, 2284 CrossRef CAS.
  15. A. T. Woolley and R. A. Mathies, Anal. Chem., 1995, 67, 3676 CrossRef CAS.
  16. D. E. Raymond, A. Manz and H. M. Widmer, Anal. Chem., 1996, 68, 2515 CrossRef CAS.
  17. S. C. Jacobson and J. M. Ramsey, Anal. Chem., 1996, 68, 720 CrossRef CAS.
  18. K. Fluri, G. Fitzpatrick, N. Chiem and D. J. Harrison, Anal. Chem., 1996, 68, 4285 CrossRef CAS.
  19. C. Schwer and M. G. Kenndler, Anal. Chem., 1991, 63, 1801 CrossRef CAS.
  20. S. M. Ford, B. Kar, S. McWhorter, J. Davies, S. A. Soper, M. Klopf, G. Calderon and V. Saile, J. Microcol. Sep., in the press Search PubMed.
  21. H. T. G. van Lintel, F. C. M. van de Pol and S. Bouwstra, Sens. Actuators, 1988, 15, 153 CrossRef.
  22. F. C. M. van de Pol, D. G. J. Wonnink, M. Elwenspoek and J. H. J. Fluitman, Sens. Actuators, 1989, 17, 139 CrossRef.
  23. J. G. Smits, Sens. Actuators, 1990, 21, 203 Search PubMed.
  24. W. K. Schomburg, J. Fahrenberg, D. Maas and R. Rapp, J. Micromech. Microeng., 1993, 3, 216 CrossRef CAS.
  25. T. Korenaga, X. Zhou, T. Moriwake, H. Muraki, T. Naito and S. Sanuk, Anal. Chem., 1994, 66, 73 CrossRef CAS.
  26. E. Stemme and G. Stemme, Sens. Actuators A, 1993, 39, 159 CrossRef CAS.
  27. A. Olsson, P. Enoksson, G. Stemme and E. Stemme, J. Micromech. Microeng., 1995, 6, 87 CrossRef.
  28. M. Heschel, M. Mullenborn and S. Bouwstra, J. Microelectromech. Syst., 1997, 6, 41 CrossRef CAS.
  29. A. Olsson, P. Enoksson, G. Stemme and E. Stemme, J. Microelectromech. Syst., 1997, 6, 161 CrossRef CAS.
  30. A. Olsson, O. Larsson, J. Holm, L. Lundbladh, O. Ohman and G. Stemme, Sens. Actuators A, 1998, 64, 63 CrossRef.
  31. R. Mathies, A. R. Oseroff and L. Stryer, Proc. Natl. Acad. Sci. USA, 1976, 73, 1 CAS.
  32. S. A. Soper, H. L. Nutter, R. A. Keller, L. M. Davis and E. B. Shera, Photochem. Photobiol., 1993, 57, 972 CAS.
  33. F. M. White, Fluid Mechanics, McGraw-Hill, New York, 1986, pp. 348–352 Search PubMed.
  34. Y. Vladimirsky, O. Vladimirsky, V. Saile, K. J. Morris and J. M. Klopf, Proc. SPIE, 1995, 2621, 399 Search PubMed.
  35. Y. Vladimirsky, O. Vladimirsky, V. Saile, K. J. Morris and J. M. Klopf, Proc. SPIE, 1995, 2437, 391 Search PubMed.
  36. S. M. Ford, J. Davies, B. Kar, C. V. Owens, M. Klopf, G. Calderon, V. Saile and S. A. Soper, Anal. Chem., submitted for publication Search PubMed.