Analytical control of wollastonite for biomedical applications by use of atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

P. N. De Aza, F. Guitián, S. De Aza and F. J. Valle


Abstract

Preliminary in vitro experiments revealed that wollastonite (CaSiO3) is a potentially highly bioactive material that forms a hyroxyapatite (HA) surface layer on exposure to simulated body fluid with an ion concentration, pH and temperature virtually identical with those of human blood plasma. The formation of the HA layer is an essential requirement for an artificial material to be used as bioactive bone substitute. This finding opens up a wide field for biomedical applications of wollastonite. Biomaterials used as implants in the human body require strict control of trace elements and of the toxic species specified in American Society for Testing and Materials F-1185-88 (As, Cd, Hg and Pb) in ceramic hydroxyapatite for surgical implantation. In this work, two types of pseudowollastonite, the high temperature form of wollastonite, were analysed by using cold vapour atomic absorption spectrometry and hydride generation atomic absorption spectrometry, in order to determine the elements stated in the above-mentioned norm, and inductively coupled plasma atomic emission spectrometry to establish the SiO2/CaO ratio of the two materials and analyse for all other impurities introduced by the raw materials and by the processes of synthesis, sintering and grinding. Barium and Mg were especially prominent in raw materials, and Zr, Y, Mg, W, Co and Ni come mainly from the processing.


References

  1. L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenle, Jr., J. Biomed. Mater. Res., 1971, 2, 117 CrossRef.
  2. T. Kokubo, S. Ito, S. Sakka and Y. Yamamuro, J. Mater. Sci., 1986, 21, 536 CrossRef CAS.
  3. T. Kobubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, Y. Yamamuro and S. Hagashi, Bull. Inst. Chem. Res., Kyoto Univ., 1982, 60, 260 Search PubMed.
  4. C. Ohtsuki, T. Kokubo and T. Yamamuro, J. Non-Cryst. Solids, 1992, 143, 84 CAS.
  5. L. L. Hench and J. W. Wilson, Science, 1984, 226, 630 CrossRef CAS.
  6. L. L. Hench and J. Wilson, in An Introduction to Bioceramics, Advanced Series in Ceramics, World Scientific, Singapore, 1993, vol. 1, pp. 1–23 Search PubMed.
  7. U. Gross, R. Kinne, H. J. Schmitz and V. Strunz, CRC Crit. Rev. Biocompat., 1988, 4, 2 Search PubMed.
  8. U. Gross and V. Strunz, J. Biomed. Mater. Res., 1985, 19, 251 CrossRef CAS.
  9. T. Kokubo, in Ceramics: Towards the 21st Century, ed. Soga, N., and Kato, A., The Ceram. Soc. of Japan, Tokyo, 1991, p. 500 Search PubMed.
  10. K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura and M. Oka, J. Mater. Sci. Mater. Med., 1992, 3, 95 CrossRef CAS.
  11. E. Horowitz and E. Mueller, in An Introduction to Bioceramics, ed. Hench, L. L., and Wilson, J., CRC Press, Singapore, 1993, p. 335 Search PubMed.
  12. Federal Food, Drug and Cosmetic Act (USA), in Medical Device Amendent, May 28, 1976, US Government Printing Office, Washington, DC, 1990, 0-248-576QL3 Search PubMed.
  13. Highlights of Safe Medical Devices Act of 1990, FDA Booklet: FDA 91-4243. US Department of Health and Human Service, Center for Devices and Radiological Health, Rockville, MA, August 1991 Search PubMed.
  14. House of Representatives, Report No. 101-959, 1990. Research Agenda for the 1990s, FDA/CDRH, Special Publication, September 18, 1989.
  15. P. N. De Aza, F. Guitián and S. De Aza, Scr. Metall. Mater., 1994, 31, 1001 CrossRef CAS.
  16. P. N. De Aza, F. Guitián and S. De Aza, in Materials in Clinical Application ed. Vicenzini, P., Advances in Science and Technology, Vol. 12, Techna, Faenza, 1995, p. 9 Search PubMed.
  17. P. N. De Aza, Z. Luklinska, M. Anseau, F. Guitián and S. De Aza, J. Microsc., 1996, 182, 24 CAS.
  18. P. N. De Aza, A. Merlo, E. Lora, F. Guitián and S. De Aza, J. Mater. Science Mater. Med., 1996, 7, 399 Search PubMed.
  19. L. Devesa, Institute of Ceramics, Univ. of Santiago de Compostela, Spain, personal communication.
  20. Designation: F 1185-88, American Society for Testing and Materials (ASTM), 1988.
  21. P. W. J. M. Boumans, Inductively Coupled Plasma Emission Spectroscopy. Part 1, Methodology, Instrumentation and Performance, Wiley, New York, 1987, pp. 102–110 Search PubMed.
  22. P. J. Potts, A Handbook of Silicate Rock Analysis, Blackie, New York, 1987, ch. 2, pp. 47–52 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.