Association of desferrioxamine with humic substances and their interaction with cadmium(II) as studied by pyrolysis–gas chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy†

(Note: The full text of this document is currently only available in the PDF Version )

Richard. M. Higashi, Teresa. W-M. Fan and Andrew N. Lane


Abstract

In soils, sediments and aqueous media, the existence of any significant association of organic ligands with humic substances (HS) would complicate metal ion equilibria and kinetics beyond those of existing models that assume competition among non-interacting ligands. Multi-dimensional NMR techniques were applied to obtain kinetic and structural evidence of extensive association of desferrioxamine B (DFOB) with HS. This occurred through diaminopentyl and succinyl protons of DFOB with the aromatic/phenolic and/or saccharidic groups of HS, and exhibited an exchange rate of 15000–25000 s–1. Additionally, the aqueous interaction of HS, DFOB and CdII was probed using pyrolysis–GC–MS analysis directly of microliter volumes. Although pyrolysis–GC–MS data can be difficult to interpret alone, the NMR characterization of ligand–HS association enabled the results to be interpreted. Pyrolysis–GC–MS revealed thermolyzate markers that permitted the quantification of total DFOB and apparent complexes of DFOB·Cd and HS·Cd. The results indicate that the formation of DFOB·HS (or possibly DFOB·Cd·HS) caused significant decreases in the formation of the chelator complex, DFOB·Cd. This decrease did not fit with equilibrium-based concepts since the order of addition strongly influenced all results. Although previously unknown, the results show that such organic ligand–HS interactions do occur, which significantly alter the metal ion chemistry and probably affect bioavailability; the latter is relevant since DFOB is a siderophore synthesized by bacteria to acquire metal ions. Therefore, in order to understand the bioavailability of metal ions in real systems such as the rhizosphere one must consider the interactions of HS with biogenic ligands, for which liquid-state multi-dimensional NMR is a powerful tool. Unlike metal–ligand measurements that are limited to liquid state and/or low paramagnetic samples, the pyrolysis–GC–MS method has the potential to be extended to whole soils and sediments for the analysis of metal ion speciation.


References

  1. Iron Chelation in Plants and Soil Microorganisms, ed. Barton, L. L,. and Hemming, B. C., Academic Press, San Diego, 1993, and references cited therein Search PubMed.
  2. T. W.-M. Fan, A. N. Lane, J. Pedler, D. Crowley and R. M. Higashi, Anal. Biochem., 1997, 251, 57 CrossRef CAS.
  3. J. Buffle, Complexation Reactions in Aquatic Systems: an Analytical Approach, Ellis Horwood, Chichester, 1988 Search PubMed.
  4. M. H. B. Hayes, in Advances in Soil Organic Matter Research: the Impact on Agriculture and the Environment, ed. Wilson, W. S., The Royal Society of Chemistry, Cambridge, 1991, p. 3 Search PubMed.
  5. D. M. Grimm, L. V. Azarraga, L. A. Carrelra and W. Susetyo, Environ. Sci. Technol., 1991, 25, 1427 CAS.
  6. B. M. Petronio, B. Cosma, A. Mazzucotelli and P. Rivaro, Intern. J. Environ. Anal. Chem., 1993, 54, 45 Search PubMed.
  7. J. C. Westall, J. D. Jones, G. D. Turner and J. M. Zachara, Environ. Sci. Technol., 1995, 29, 951 CAS.
  8. M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk and L. K. Koopal, Environ. Sci. Technol., 1995, 29, 446 CAS.
  9. D. G. Kinniburgh, C. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. Filius, L. K. Koopal and W. H. van Riemsdijk, Environ. Sci. Technol., 1996, 30, 1687 CrossRef CAS.
  10. X. Jin, G. W. Bailey, Y. S. Yu and A. T. Lynch, Soil Sci., 1996, 161, 509 CrossRef CAS.
  11. N. Senesi, G. Sposito, G. R. Bradford and K. M. Holtzclaw, Water Air Soil Pollut., 1991, 55, 409 CAS.
  12. T. Hernandez, J. I. Moreno and F. Costa, Agrochimica, 1993, 37, 12 Search PubMed.
  13. J. D. Allison and E. M. Perdue, in Humic Substances in the Global Environment and Implications on Human Health, ed. Senesi, N., and Miano, T. M., Elsevier, Amsterdam, 1994, pp. 927–942 Search PubMed.
  14. M. A. Glaus, W. Hummel and L. R. van Loon, Environ. Sci. Technol., 1995, 29, 2150 CAS.
  15. P. E. Powell, P. J. Szaniszlo, G. R. Cline and C. P. P. Reid, J. Plant Nutr., 1982, 5, 653 Search PubMed.
  16. V. Solinas, in Humic Substances in the Global Environment and Implications on Human Health, ed. Senesi, N., and Miano, T. M., Elsevier, Amsterdam, 1994, p. 1183 Search PubMed.
  17. R. D. Hancock and A. E. Martell, Chem. Rev., 1989, 89, 1875 CrossRef CAS.
  18. D. C. Olk, K. G. Cassman and T. W.-M. Fan, Geoderma, 1995, 65, 195 CrossRef CAS.
  19. G. Davies, A. Fataftah, A. Cherkasskiy, A. Radwan, S. A. Jansen, M. Paciolla and E. A. Ghabbour, paper presented at the 8th International Humic Substances Society Meeting, 1994.
  20. A. N. Lane, C. J. Bauer and T. A. Frenkiel, Eur J. Biophys., 1993, 21, 425 Search PubMed.
  21. B. Borgias, A. D. Hugi and K. N. Raymond, Inorg. Chem., 1989, 28, 3538 CrossRef CAS.
  22. J. M. Bracewell, K. Haider, S. R. Larter and H.-R. Schulten, in Humic Substances II: in Search of Structure, ed. Hayes, M. H. B., MacCarthy, P., Malcolm, R. L., and Swift, R. S., Wiley, Chichester, 1989, pp. 182–222 Search PubMed.
  23. G. Anderegg, F. L'Eplattenier and G. Schwarzenbach, Helv. Chim. Acta, 1963, 46, 1400 CrossRef CAS.
  24. A. Evers, R. D. Hancock, A. E. Martell and R. J. Motekaitis, Inorg. Chem., 1989, 28, 2189 CrossRef CAS.
  25. M. Nip, J. W. de Leeuw, P. J. Holloway, J. P. T. Jensen, J. C. M. Sprenkels, M. de Pooter and J. J. M. Sleeckx, J. Anal. Pyrol., 1987, 11, 287 Search PubMed.
  26. E. Tipping, Environ. Sci. Technol., 1993, 27, 520 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.