Comparison of fluorimetric and inductively coupled plasma mass spectrometry detection systems for the determination of aluminium species in waters by high-performance liquid chromatography

(Note: The full text of this document is currently only available in the PDF Version )

Ben Fairman, Alfredo Sanz-Medel, Phil Jones and E. Hywel Evans


Abstract

The comparison of element-specific detection using HPLC–ICP-MS with an established HPLC–fluorimetric method for aluminium speciation in waters is described. This comparison allowed the identification of some problems with a fluorimetric detection method based around 8-hydroxyquinoline-5-sulfonic acid, particularly its comparatively poor selectivity and Al-species dependent response factors. The power of ICP-MS as a detector for HPLC systems is demonstrated by the simultaneous detection of Al, Mg, Zn, and Fe. The increased selectivity of ICP-MS over molecular fluorescence is shown in the reliable quantification of Al3+ and AlF2+ in a range of tap and natural water samples. The fluorimetric technique exhibited varying response factors to different aluminium species while the specific detector gave constant signals. Both techniques provided similar values for the ‘free’ Al3+ fraction in a variety of natural waters but systematic differences were obtained in the quantification of the AlF2+ fraction. Problems with the ICP-MS detection method for Al-speciation analysis such as ion interferences and salt concentration of the mobile phase are commented upon.


References

  1. C. T. Driscoll, J. P. Baker, J. J. Bisogni and C. L. Schofield, Nature, 1980, 284, 161 CrossRef.
  2. R. J. Wright, V. C. Baliger and S. F. Wright, Soil Sci., 1987, 144, 224 CAS.
  3. M. R. Wills and J. Savory, Lancet, 1983, ii, 29 CrossRef.
  4. R. K. Dalziel, R. Morris and D. J. A. Brown, Water Air Soil Pollut., 1986, 30, 593 CrossRef.
  5. B. Fairman and A. Sanz-Medel, in Quality Assurance for Environmental Analysis within the BCR programme, ed. Quevauviller, Ph., Maier, E. A., and Griepink, B., Elsevier, Amsterdam, 1994, ch. 9 Search PubMed.
  6. N. Clarke, L.-G. Danielsson and A. Sparén, Int. J. Environ. Anal. Chem., 1992, 48, 77 CrossRef CAS.
  7. B. Fairman and A. Sanz-Medel, Int. J. Environ. Anal. Chem., 1993, 50, 161 CAS.
  8. P. M. Bertsch and M. A. Anderson, Soil Sci. Soc. Am. J., 1988, 52, 540 CAS.
  9. P. M. Bertsch and M. A. Anderson, Anal. Chem., 1989, 61, 535 CrossRef CAS.
  10. S. Motellier and H. Pitsch, J. Chromatogr. A., 1994, 660, 211 CrossRef CAS.
  11. J. R. Dean, Analyst, 1989, 114, 165 RSC.
  12. P. Jones, Int. J. Environ. Anal. Chem., 1991, 44, 1 CAS.
  13. P. Jones and B. Paull, Anal. Proc., 1992, 29, 402 Search PubMed.
  14. B. Fairman, A. Sanz-Medel, M. Gallego, M. J. Quintela, P. Jones and R. Benson, Anal. Chim. Acta, 1994, 286, 401 CrossRef.
  15. Editorial, Chem. Br., 1994, 30(7), 548 Search PubMed.
  16. E. H. Evans and J. J. Giglio, J. Anal. At. Spectrom., 1993, 8, 1 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.