Determination of anions in soil solutions by capillary zone electrophoresis

(Note: The full text of this document is currently only available in the PDF Version )

Bjarne Westergaard and Hans C. B. Hansen


Abstract

Two simple methods have been developed for the direct quantification of low molecular mass aliphatic carboxylates and inorganic anions in soil solutions by capillary zone electrophoresis (CZE), one for di- and tricarboxylates and inorganic anions and the other for monocarboxylates. In addition to carboxylates and inorganic anions, soil solutions contain cations and unspecified humic substances which can interfere in the CZE analysis. Owing to complex formation, high concentrations of aluminium will invalidate the quantification of di- and tricarboxylates, such as citrate, malate and oxalate. This interference may be eliminated by addition of 10% v/v of 20 mM Na4EDTA at pH 11 to the soil solution samples prior to the analysis, with no further sample preparation. Metal cations did not interfere in the quantification of monocarboxylates and inorganic anions. The detection limits of low molecular mass aliphatic carboxylates and inorganic anions were all below 2 µM. The relative standard deviations for carboxylates and inorganic anions were within the ranges 4.2–5.1% for 100 µM and 9.3–59% for 1 µM standard solutions. The recovery of oxalate added to soil solution was 100 ± 8%. The CZE method requires small sample volumes and is robust to high concentrations of humic substances in the soil solutions and it is easier to maintain the capillary than ion chromatographic columns.


References

  1. J. D. Wolt, Soil Solution Chemistry. Applications to Environmental Science and Agriculture, Wiley, New York, 1994 Search PubMed.
  2. D. S. Ross and R. J. Barlett, Soil Sci. Soc. Am. J., 1996, 60, 589 CAS.
  3. K. Raulund-Rasmussen, O. K. Borggaard, H. C. B. Hansen and M. Olsson, Eur. J. Soil Sci., in the press Search PubMed.
  4. N. V. Hue, G. R. Craddock and F. Adams, Soil Sci. Soc. Am. J., 1986, 50, 28 CAS.
  5. A. A. Pohlman and J. G. McColl, Soil Sci. Soc. Am. J., 1988, 52, 265 CAS.
  6. T. R. Fox and N. B. Comerford, Soil Sci. Soc. Am. J., 1990, 54, 1139 CAS.
  7. A. J. Krzyszowska, M. J. Blaylock, G. F. Vance and M. B. David, Soil Sci. Soc. Am. J., 1996, 60, 1565 CAS.
  8. J. I. Drever, Geochim. Cosmochim. Acta, 1994, 58, 2325 CrossRef CAS.
  9. B. C. Lilieholm, L. M. Dudley and J. J. Jurinak, Soil Sci. Soc. Am. J., 1992, 56, 324 CAS.
  10. A. Göttlein and R. Blasek, Soil Sci., 1996, 161, 705 CrossRef.
  11. X. Huang, J. A. Luckey, M. J. Gordon and R. N. Zare, Anal. Chem., 1989, 61, 766 CrossRef CAS.
  12. B. F. Kenney, J. Chromatogr., 1991, 546, 423 CrossRef CAS.
  13. L. Kelly and R. J. Nelson, J. Liq. Chromatogr., 1993, 16, 2103 CAS.
  14. P. R. Haddad, A. H. Harakuwe and W. Buchberger, J. Chromatogr. A, 1995, 706, 571 CrossRef CAS.
  15. A. Röder and K. Bächmann, J. Chromatogr. A, 1995, 689, 305 CrossRef.
  16. C. H. Wu, Y. S. Lo, Y. -H. Lee and T. -I. Lin, J. Chromatogr. A, 1995, 716, 291 CrossRef CAS.
  17. K. Raulund-Rasmussen and H. Vejre, Plant Soil, 1995, 168/169, 345 Search PubMed.
  18. S. M. Cousins, P. R. Haddad and W. Buchberger, J. Chromatogr. A, 1994, 671, 397 CrossRef CAS.
  19. ACS Committee on Environmental Improvement, Anal. Chem., 1980, 52, 2242 Search PubMed.
  20. Analytical Methods Committee, Analyst, 1987, 112, 199 Search PubMed.
  21. D. C. Sharman, Analyst, 1997, 122, 709 RSC.
  22. T. G. Howe, L. M. Dudley and J. J. Jurinak, Commun. Soil Sci. Plant Anal., 1990, 21, 2371 Search PubMed.
  23. E. M. Thurman, Organic Geochemistry of Natural Waters, Nijhoff/Junk, Dordrecht, 1985 Search PubMed.
  24. G. F. Vance and M. B. David, Geochim. Cosmochim. Acta, 1991, 55, 3611 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.