Complementary use of capillary gas chromatography–mass spectrometry (ion trap) and gas chromatography–inductively coupled plasma mass spectrometry for the speciation of volatile antimony, tin and bismuth compounds in landfill and fermentation gases†

(Note: The full text of this document is currently only available in the PDF Version )

Jörg Feldmann, Iris Koch and William R. Cullen


Abstract

ICP-MS is very sensitive and has limited matrix effects when used as an element-specific detector for GC in order to identify volatile metal or metalloid species. GC–MS is not very sensitive or selective in the electron ionization (EI) mode, but provides molecular information about volatile species. In this work, an ion trap EI-MS–MS and an ICP-MS system were used as two different detectors for the same GC system to provide complementary information about volatile organometallic species in the complex matrices of landfill and sewage sludge fermentation gases. A simple robust GC separation method with cryotrapping was adequate for the separation of the different metal(loid) containing volatile compounds, and was directly coupled to the ICP-MS system. In addition, gas samples from this GC system were collected in evacuated vials. These fractions were further separated on a capillary column and detected in an ion trap mass spectrometer. For the first time, parent ions, fragmentation patterns, isotopic ratios for Sb and Sn, and MS–MS data were used to identify positively Me3Sb, Me4Sn and Et2Me2Sn in landfill gas and Me3Sb and Me3Bi in fermentation gas.


References

  1. S. Hetland, I. Martinsen, B. Radzuik and Y. Thomassen, Anal. Sci., 1991, 7, 1029 CAS.
  2. O. F. X. Donard and J. H. Weber, Nature (London), 1988, 332, 339 CrossRef CAS.
  3. D. Amouroux and O. F. X. Donard, Geophys. Res. Lett., 1996, 23, 1777 CrossRef CAS.
  4. C. N. Cheng and D. D. Focht, Appl. Environ. Microbiol., 1979, 38, 494 CAS.
  5. H. Gürleyük, V. van Fleet-Stadler and T. G. Chasteen, Appl. Organomet. Chem., 1997, 11, 471 CrossRef CAS.
  6. J. Feldmann, T. Riechmann and A. V. Hirner, Fresenius' J. Anal. Chem., 1996, 354, 620 CAS.
  7. J. Feldmann, R. Grümping and A. H. Hirner, Fresenius' J. Anal. Chem., 1994, 350, 228 CrossRef CAS.
  8. J. Feldmann and A. V. Hirner, Int. J. Environ. Anal. Chem., 1995, 60, 339 CrossRef CAS.
  9. J. Feldmann and W. R. Cullen, Environ. Sci. Technol., 1997, 31, 2125 CrossRef CAS.
  10. G. T. Morgan and G. T. Davies, Proc. R. Soc. London, Ser. A., 1926, 110, 523.
  11. L. Moens, T. De Smaele, R. Dams, P. Van Den Broeck and P. Sandra, Anal. Chem., 1997, 69, 1604 CrossRef CAS.
  12. R. S. Ward, G. M. Williams and C. C. Hills, Waste Manage. Res., 1996, 14, 243 Search PubMed.
  13. A. V. Hirner, J. Feldmann, R. Goguel, S. Rapsomanikis, R. Fischer and M. O. Andreae, Appl. Organomet. Chem., 1994, 8, 65 CrossRef CAS.
  14. J. Feldmann, E. M. Krupp, L. M. Müller and A. V. Hirner, Appl. Organomet. Chem., to be submitted Search PubMed.
  15. J. Feldmann, J. Anal. At. Spectrom., 1997, 12, 1069 RSC.
  16. P. De Bièvre and I. L. Barnes, Int. J. Mass Spectrom. Ion Processes., 1985, 65, 211 CrossRef CAS.
  17. Y. S. Nekrasov and D. V. Zagorevskii, in The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds, ed. Patai, S., Wiley, Chicester, 1994, pp. 237–264 Search PubMed.
  18. R. G. Kostyanovskii and V. G. Plekhanov, Org. Mass Spectrom., 1972, 6, 1183 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.