Speciation of selenium in aqueous and biological matrices by microbore ion chromatography coupled with electrothermal atomic absorption spectrometry via ultra low volume fraction collection†

(Note: The full text of this document is currently only available in the PDF Version )

Håkan Emteborg, Guy Bordin and Adela R. Rodriguez


Abstract

A robust, user-friendly, sensitive and affordable speciation method based on microbore anion-exchange chromatography (IC) for the separation of selenium species and Zeeman-effect ETAAS for element specific detection is described. By exploiting the very low flow rates normally employed in microbore chromatography, the analytical usefulness of chromatography coupled to the sensitive but discontinuous ETAAS detector has been increased in comparison with couplings incorporating normal bore liquid chromatography. The flow rate of the mobile phase in this particular IC system was 80 µl min1. A highly reproducible and automated collection of 20 µl fractions in sampler cups was used for interfacing the chromatographic separation with ETAAS. The IC–ETAAS results were also directly compared with those obtained by IC-direct injection nebulizer ICP-AES for assessing the chromatographic resolution of the proposed method. It is possible to separate selenomethionine, selenite, selenate and selenocystine in 6 min. The trade-off in chromatographic resolution and time consumption in the detection step using IC–ETAAS is compensated for by a high degree of simplicity and the high specificity and sensitivity of the Zeeman-effect ETAAS resulting in relative detection limits of 2.8–4.1 ng ml1 (42–61 pg absolute). These detection limits are comparable to those for published HPLC–ICP-MS methods. The method was evaluated by injecting aqueous standards, unspiked and spiked sample extracts from the biological certified reference material CRM 402. The eluent was injected along with a palladium–magnesium nitrate modifier since the pyrolysis curves for trimethylselenonium, selenomethionine, selenite, selenate and selenocystine revealed a similar response for all species by using this modifier, i.e, all species are thermally stabilized up to 1000 °C. Without adding the modifier, the species showed very different volatilities during the thermal pre-treatment step.


References

  1. Environmental Health Criteria 58, Selenium, World Health Organization, Geneva, 1987 Search PubMed .
  2. G. Kölbl, K. Kalcher, K. J. Irgolic and J. Magee, Appl. Organomet. Chem., 1993, 7, 443 CrossRef .
  3. C. Cámara, M. G. Cobo, M. A. Palacios, R. Muñoz and O. F. X. Donard, in Quality Assurance for Environmental Analysis, ed. Quevauviller, P., Maier, E., and Griepink, B., Elsevier, Amsterdam, 1995, ch. 10, pp. 235–262 Search PubMed .
  4. R. Muñoz Olivas, O. F. X. Donard, C. Cámara and P. Quevauviller, Anal. Chim. Acta, 1994, 286, 357 CrossRef .
  5. C. Haraldsson, M. Pollak and P. Öhman, J. Anal. At. Spectrom., 1992, 7, 1183 RSC .
  6. O. Nygren, C. A. Nilsson and W. Frech, Anal. Chem., 1988, 60, 2204 CrossRef CAS .
  7. D. Chakraborti, D. C. J. Hillman, K. J. Irgolic and R. A. Zingaro, J. Chromatogr., 1982, 249, 81–92 CrossRef CAS .
  8. F. Laborda, D. Chakraborti, J. M. Mir and J. R. Castillo, J. Anal. At. Spectrom., 1993, 8, 643 RSC .
  9. F. Laborda, M. V. Vicente, J. M. Mir and J. R. Castillo, Fresenius' J. Anal. Chem., 1997, 357, 837 CrossRef CAS .
  10. M. Potin-Gautier, C. Boucharat, A. Astruc and M. Astruc, Appl. Organomet. Chem., 1993, 7, 593 CrossRef CAS .
  11. N. Gilon, A. Astruc, M. Astruc and M. Potin-Gautier, Appl. Organomet. Chem., 1995, 9, 623 CrossRef CAS .
  12. N. Gilon, M. Potin-Gautier and M. Astruc, J. Chromatogr. A, 1996, 750, 327 CrossRef CAS .
  13. J. M. Marchante-Gayón, J. M. González, M. L. Fernández, E. Blanco and A. Sanz-Medel, Fresenius' J. Anal. Chem., 1996, 355, 615 CAS .
  14. J. M. González Lafuente, M. L. Fernández Sánchez and A. Sanz-Medel, J. Anal. At. Spectrom., 1996, 11, 1163 RSC .
  15. A. Hagège, S. Niemczyk and M. J. F. Leroy, Analusis, 1995, 23, 476 CAS .
  16. F. Laborda, M. T. C. de Loos-Vollebregt and L. de Galan, Spectrochim. Acta, Part B, 1991, 46, 1089 CrossRef .
  17. S. C. K. Shum and R. S. Houk, Anal. Chem., 1993, 65, 2972 CrossRef CAS .
  18. N. Jakubowski, C. Thomas, D. Stuewer, I. Dettlaff and J. Schram, J. Anal. At. Spectrom., 1996, 11, 1023 RSC .
  19. M. A. Quijano, A. M. Gutiérrez, M. C. Pérez-Conde and C. Cámara, J. Anal. At. Spectrom., 1996, 11, 407 RSC .
  20. H. M. Crews, P. A. Clarke, D. J. Lewis, L. M. Owen, P. R. Strutt and A. Izquiredo, J. Anal. At. Spectrom., 1996, 11, 1177 RSC .
  21. R. Muñoz Olivas, O. F. X. Donard, N. Gilon and M. Potin-Gautier, J. Anal. At. Spectrom., 1996, 11, 1171 RSC .
  22. G. Kölbl, Mar. Chem., 1995, 48, 185 CrossRef .
  23. C. Thomas, N. Jakubowski, D. Stuewer and D. Klockow, Poster 4-7 presented at the European Winter Conference on Plasma Spectrochemistry, Ghent, Belgium, 1997 .
  24. H. Emteborg, G. Bordin and A. R. Rodriguez, Analyst, 1998, 2, 245 RSC .
  25. H. Garraud, A. Woller, P. Fodor and O. F. X. Donard, Analusis, 1997, 25, 25 CAS .
  26. G. R. Carnrick, D. C. Manning and W. Slavin, Analyst, 1983, 108, 1297 RSC .
  27. J. Bauslaugh, B. Radziuk, K. Saeed and Y. Thomassen, Anal. Chim. Acta, 1984, 165, 149 CrossRef CAS .
  28. H. Docekalová, B. Docekal, J. Komárek and I. Novotný, J. Anal. At. Spectrom., 1991, 6, 661 RSC .
  29. B. Radziuk and Y. Thomassen, J. Anal. At. Spectrom., 1992, 7, 397 RSC .
  30. B. Welz, G. Bozai, M. Sperling and B. Radziuk, J. Anal. At. Spectrom., 1992, 7, 505 RSC .
  31. J. K. Johannessen, B. Gammelgaard, O. Jøns and S. H. Hansen, J. Anal. At. Spectrom., 1993, 8, 999 RSC .
  32. A. B. Volinsky and V. Krivan, J. Anal. At. Spectrom., 1996, 11, 159 RSC .
  33. G. Alsing-Pedersen and E. H. Larsen, Fresenius' J. Anal. Chem., 1997, 358, 591 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.