Raman microscopy of dickite, kaolinite and their intercalates†

(Note: The full text of this document is currently only available in the PDF Version )

Ray L. Frost, Thu Ha Tran, Llewellyn Rintoul and Janos Kristof


Abstract

Raman microscopy has been used to study kaolinites and dickites and their intercalates and to identify dickites in kaolins at low concentrations. During the intercalation, with potassium acetate, of a low defect structure kaolinite, several crystals provided significantly different Raman spectra. This led to the proposition that during the kaolinite intercalation process, some dickite crystals in the kaolinite were also intercalated. Raman bands at 3631 and 3640 cm1 for the dickite were observed, corresponding well with standard dickite bands. The kaolinite intercalate showed upon intercalation, an additional Raman band at 3605 cm1 with a consequential marked decrease in the Raman intensity of the bands at 3652, 3670, 3684, and 3693 cm1 assigned to the vibrational modes of the inner surface hydroxyl groups. Additional Raman bands for the intercalated dickite were observed at 3609 and 3599 cm1. These bands are attributed to the formation of a strongly hydrogen bonded complex between the inner surface hydroxyl groups of dickite and the carboxyl groups of the potassium acetate. The intensity of the 3685 cm1 band was reduced to a minimum and the other three inner surface hydroxyls with Raman bands at 3652, 3670, and 3693 cm1 were absent in the dickite spectra. Pronounced changes in the low frequency region for both intercalates were observed.


References

  1. R. Parker and R. L. Frost, in Proceedings of the 10th International Clay Conference, ed. Churchman G. J., Fitzpatrick R. W. and Eggleton R. A., CSIRO Publishing, Melbourne, Australia, 1995, pp. 300–303 Search PubMed.
  2. R. W. Parker and R. L. Frost, Clays Clay Miner., 1966, 44, 32.
  3. G. Lagaly, Philos. Trans. R. Soc. London, Ser. A, 1984, 311, 315 Search PubMed.
  4. R. L. Ledoux and J. L. White, J. Colloid Interface Sci., 1966, 21, 127 CAS.
  5. J. G. Thompson and C. Cuff, Clays Clay Miner., 1985, 33, 490 CAS.
  6. M. Raupach, P. F. Barron and J. G. Thompson, Clays Clay Miner., 1987, 35, 208 CAS.
  7. A. Weiss, W. Thielepape, W. Ritter, H. Schafer and G. Goring, Anorg. Allg. Chem., 1963, 320, 183 Search PubMed.
  8. J. M. Adams and D. A. Jefferson, Acta Crystallogr., Sect. B, 1976, 32, 1180 CrossRef.
  9. O. Anton and P. G. Rouxhet, Clays Clay Miner., 1977, 25, 259 CAS.
  10. J. Barrios, A. Plancon, M. I. Cruz and C. Tchoubar, Clays Clay Miner., 1977, 25, 422 CAS.
  11. G. W. Brindley, C.-C. Kao, J. L. Harrison, M. Lipsiscas and R. Raythatha, Clay Clay Miner., 1986, 34, 233.
  12. R. L. Frost, Clay Clay Miner., 1995, 43, 91.
  13. R. L. Frost, Chem. Aust., 1996, 63, 446 Search PubMed.
  14. R. L. Frost, Clay Miner., 1997, 32, 73 Search PubMed.
  15. R. L. Frost and S. J. Van der Gaast, Clay Miner., 1997, 32, 293 Search PubMed.
  16. A. Wiewiora, T. Wieckowski and A. Sokolowska, Arch. Miner., 1979, 135, 5 Search PubMed.
  17. C. T. Johnston, S. F. Agnew and D. L. Bish, Clays Clay Miner., 1990, 38, 573 CAS.
  18. D. L. Bish and C. T. Johnston, Clays Clay Miner., 1993, 41, 297 CAS.
  19. Crystal Structures of Clay Minerals and their X-ray Identification, ed. Brindley G. W. and Brown, G., London Mineralogical Society, London, 1984 Search PubMed.
  20. D. L. Bish and R. B. Von Dreele, Clays Clay Miner., 1989, 37, 289 CAS.
  21. J. Kristof, M. Toth, M. Gabor, P. Szabo and R. L. Frost, J. Thermal Anal., 1997, 49, 1441 Search PubMed.
  22. K. Wada, Clay Miner., 1967, 7, 51 Search PubMed.
  23. J. L. White, A. Laycock and M. Cruz, Bull Groupe Franc. Argiles, 1970, 22, 157 Search PubMed.
  24. P. G. Rouxhet, N. Samudacheata, H. Jacobs and O. Anton, Clay Miner., 1977, 12, 171 Search PubMed.
  25. V. C. Farmer and J. D. Russell, Spectrochim. Acta, 1964, 20, 1149 CrossRef CAS.
  26. V. Pajcini and P. Dhamelincourt, Appl. Spectrosc., 1994, 48, 638 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.