Expression immunoassay based on antibodies labeled with a deoxyribonucleic acid fragment encoding the α-peptide of β-galactosidase

(Note: The full text of this document is currently only available in the PDF Version )

Stephanie R. White and Theodore K. Christopoulos


Abstract

An immunoassay is reported which uses, as a label, an expressible DNA fragment encoding the α-peptide of β-galactosidase. This inactive peptide consists of 97 amino acid residues containing an amino-terminal portion of the enzyme. Antigen (an anti-thyrotropin immunoglobulin) immobilized in microtiter wells is allowed to react with specific antibodies which are then linked to the DNA label via biotin–streptavidin interaction. After completion of the immunoreaction, the solid phase bound DNA is subjected to a cell-free, one-step transcription/translation reaction to produce the α-peptide. The α-peptide is allowed to react (complementation reaction) with the remaining part of the β-galactosidase (M15 protein, also inactive) to give fully active enzyme molecules. 4-Methylumbelliferyl galactoside is used as a substrate. The fluorescence is linearly related to the amount of antigen in the well. As little as 3 fmol of antigen can be detected. The RSDs (within-run) obtained for 8 and 20 fmol of antigen were 10.7 and 9.3%, respectively (n=4). The present work illustrates the utility of expressing a non-detectable peptide capable of triggering a signal generating system.


References

  1. E. P. Diamandis and T. K. Christopoulos, Immunoassay, Academic Press, San Diego, CA, 1996 Search PubMed.
  2. L. J. Kricka, Clin. Chem., 1994, 40, 347 CAS.
  3. D. J. Anderson, B. Guo, Y. Xu, L. M. Ng, L. J. Kricka, K. J. Skogerboe, D. S. Hage, L. Schoeff, J. Wang, L. J. Sokoll, D. W. Chan, K. M. Ward and K. A. Davis, Anal. Chem., 1997, 69, 165R CrossRef CAS.
  4. S. S. Desphande, Enzyme Immunoassays. From Concept to Product Development. Chapman and Hall, New York, 1996 Search PubMed.
  5. T. K. Christopoulos and N. H. L. Chiu, Anal. Chem., 1995, 67, 4290 CrossRef.
  6. R. H. Jacobson, X.-J. Zhang, R. F. DuBose and B. W. Matthews, Nature (London), 1994, 369, 761 CrossRef CAS.
  7. I. Zabin, Mol. Cell. Biochem., 1984, 49, 87.
  8. K. E. Langley and I. Zabin, Biochemistry, 1976, 15, 4866 CrossRef CAS.
  9. K. E. Langley, M. R. Villarejo, A. V. Fowler, P. J. Zamenhof and I. Zabin, Proc. Natl. Acad. Sci. USA, 1975, 72, 1254 CAS.
  10. K. Wallenfels and R. Weil, Enzymes, 1970, 7, 617 Search PubMed.
  11. P. Haima, D. Van Sinderen, S. Bron and G. Venema, Gene, 1990, 93, 41 CrossRef CAS.
  12. R. R. Karkhoff-Schweizer and H. P. Schweizer, Gene, 1994, 140, 7 CrossRef CAS.
  13. W. A. Mohler and H. M. Blau, Proc. Natl. Acad. Sci. USA, 1996, 93, 12423 CrossRef CAS.
  14. F. Celada and I. Zabin, Biochemistry, 1979, 18, 404 CrossRef CAS.
  15. C. Yanisch-Perron, J. Vieira and J. Messing, Gene, 1985, 33, 103 CrossRef CAS.
  16. S. Lin and I. Zabin, J. Biol. Chem., 1972, 247, 2205 CAS.
  17. J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2nd edn., 1989 Search PubMed.
  18. W. Wu and M. J. Welsh, Anal. Biochem., 1995, 229, 350 CrossRef CAS.
  19. V. K. Jain and I. T. Magrath, Anal. Biochem., 1991, 199, 119 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.