Determination of physiological levels of volatile organic compounds in blood using static headspace capillary gas chromatography with serial triple detection

(Note: The full text of this document is currently only available in the PDF Version )

H.-J. Schroers and E. Jermann


Abstract

A static capillary gas chromatographic method using three different detectors [photoionization detector (PID), electron capture detector (ECD) and flame ionization detector (FID)] switched in series is presented for the determination of volatile organic compounds (VOCs) in sub µg l–1 levels. The method was applied for the analysis of selected environmentally and occupationally relevant non-halogenated and chlorinated aromatic hydrocarbons (e.g., benzene, toluene, xylenes, dichlorobenzenes) as well as chlorinated aliphatic hydrocarbons (e.g., trichloroethene, tetrachloroethene) in blood samples. Detailed investigations, in respect to the figures of merit were carried out. For most of the selected VOCs detection limits (calculated as the three-fold standard deviation of low level calibration standards) in the range from 26 (benzene) to 67 ng l–1 (m/p-xylene) were achieved which are comparable with those reported for dynamic headspace techniques in combination with mass spectrometric detection. For the individual VOCs the within-series precision varied from 4 to 19% and the day-to-day precision from 11 to 28%. Regarding PID as well as FID the calibration graphs for all substances were linear up to at least 10 µg l–1 while the ECD response was linear up to concentrations of about 0.6 µg l–1 for the halogenated compounds. Our method is applicable for the quantitative determination of VOCs in blood in the occupationally as well as in the physiologically relevant (normal) concentration range.


References

  1. D. L. Ashley, M. A. Bonin, F. L. Cardinali, J. M. McCram, J. S. Holler, L. L. Needham and D. G. Patterson, Anal. Chem., 1992, 64, 1021 CrossRef CAS.
  2. L. Dunemann and H. Hajimiragha, Anal. Chim. Acta, 1993, 283, 199 CrossRef CAS.
  3. E. Jermann, H. Hajimiragha, A. Brockhaus, I. Freier, U. Ewers and A. Roscuvanu, Zbl. Hyg., 1989, 189, 50 Search PubMed.
  4. F. Brugnone, L. Perbellini, G. B. Faccini, F. Pasini, G. Maranelli, L. Romeo, M. Gobbi and A. Zedde, Int. Arch. Occup. Environ. Health, 1989, 61, 303 CrossRef CAS.
  5. F. Brugnone, L. Perbellini, G. Maranelli, L. Romeo, G. Guglielm and F. Lombardini, Int. Arch. Occup. Environ. Health, 1992, 64, 179 CrossRef CAS.
  6. W. Popp, D. Rauscher, G. Müller, J. Angerer and K. Norpoth, Int. Arch. Occup. Environ. Health, 1994, 66, 1 CrossRef CAS.
  7. T. Ruppert, G. Scherer, A. R. Tricker and F. Adlkofer, Int. Arch. Occup. Environ. Health, 1997, 69, 247 CrossRef CAS.
  8. T. Ruppert, G. Scherer, A. R. Tricker, D. Rauscher and F. Adlkofer, J. Chromatogr. B, 1995, 666, 71 CrossRef CAS.
  9. T. Einig, L. Dunemann and W. Dehnen, J. Chromatogr. B, 1996, 687, 379 CrossRef CAS.
  10. P. W. Kok and C. N. Ong, Int. Arch. Occup. Environ. Health, 1994, 66, 195 CrossRef CAS.
  11. K. Pekari, M.-L. Riekkola and A. Aitio, J. Chromatogr., 1989, 491, 309 CrossRef CAS.
  12. J. Angerer, G. Scherer, K.-H. Schaller and J. Müller, Fresenius' J. Anal. Chem., 1991, 339, 740 CrossRef CAS.
  13. J. Begerow, E. Jermann, T. Keles, I. Freier, U. Ranft and L. Dunemann, Zbl. Hyg., 1996, 198, 394 Search PubMed.
  14. B. Kolb, LC–GC Int., 1995, 8, 512 Search PubMed.
  15. S. R. Antoine, I. R. DeLeon and R. M. O'Dell-Smith, Bull. Environ. Contam. Toxicol, 1986, 36, 364 CAS.
  16. L. Dunemann and H. Hajimiragha, in preparation.
Click here to see how this site uses Cookies. View our privacy policy here.