Mimicry of peroxidase by immobilization of hemin on N-isopropylacrylamide-based hydrogel

(Note: The full text of this document is currently only available in the PDF Version )

Yuan-zong Li, Ning He and Yun-xiang Ci


Abstract

To mimic the peroxidase activity of horseradish peroxidase (HRP), hemin was chemically attached, through its carbon–carbon double bond, to N,N′-methylenebisacrylamide (MBA)-cross-linked N- isopropylacrylamide (NIPAAm) hydrogel to form a hemin-based mimetic enzyme [poly(NIPAAm)/MBA/hemin]. The newly synthesised mimetic enzyme exhibits a lower critical solution temperature (LCST) of 39.5 °C in neutral solution. It precipitates out of the aqueous solution as the temperature is raised to and above the LCST and redissolves when it is cooled below the LCST. This behavior is reversible. The characteristics of this mimetic enzyme were systematically studied with H2O2 as oxidizing agent and p-hydroxyphenylacetic acid as fluorogenic substrate. The results showed that it may be used as a novel substitute for peroxidase. The mimetic enzyme showed an optimum reaction pH of about 9.8, which is lower than that in hemin-catalyzed reaction systems where the optimum reaction pH is about 11. The activity of the mimetic enzyme is higher than that of hemin. The LCST behavior of the newly developed mimetic enzyme made its preparation, purification and further chemical modification easier and faster. The detection limits for H2O2 and poly(NIPAAm)/MBA/hemin are 1.5×108 and 2.5×109 mol l–1, respectively.


References

  1. Handbook of Enzymatic Methods of analysis, ed. Guilbault, G. G., Marcel Dekker, New York, 1976 Search PubMed.
  2. Immunoassay, ed. Eleftherios, P. D., and Theodore, K. C., Academic Press, San Diego, CA, 1996 Search PubMed.
  3. G. G. Guilbault, P. J. Brignac and M. Zimmer, Anal. Chem., 1968, 40, 190 CrossRef CAS.
  4. Y. Saito, M. Mifune, S. Nakashima, J. Odo, Y. Tanaka, M. Chikuma and H. Tanaka, Talanta, 1987, 34, 667 CrossRef CAS.
  5. Y. X. Ci and F. Wang, Mikrochim. Acta, 1990, 1, 63 CAS.
  6. X. M. Huang, M. Zhu, L. Y. Mao and H. X. Shen, Anal. Sci., 1997, 13, 145 CAS.
  7. J. K. Tie, W. B. Chang and Y. X. Ci, Chin. J. Anal. Chem., 1994, 22, 516 CAS.
  8. M. Motsenbocker, Y. Ichimori and K. Kondo, Anal. Chem., 1993, 65, 397 CrossRef CAS.
  9. T. Imanaka and M. Takagi, ACS Symp. Ser., 1995, 604, 138 CAS.
  10. A. P. Savitsky, M. I. Nelen, A. K. Yatsmirsky, M. V. Demcheva, G. V. Ponomarev and I. V. Sinikov, Appl. Biochem. Biotechnol., 1994, 47, 317 Search PubMed.
  11. G. F. Zhang and K. D. Purnendu, Anal. Chem., 1992, 64, 517 CrossRef CAS.
  12. Y. Z. Li and A. Townshend, Anal. Chim. Acta, 1997, 340, 159 CrossRef CAS.
  13. Y. Z. Li, H. F. Liu, Z. Q. Dong, W. B. Chang and Y. X. Ci, Microchem. J., 1996, 53, 428 CrossRef CAS.
  14. Q. G. Li, J. G. Xu, X. Z. Huang and G. Z. Chen, Chin. J. Anal. Chem., 1996, 24, 1375 CAS.
  15. D. Mansuy and P. Battioni, in Bioorganic Catalysis, ed. Reedijk, J., Marcel Dekker, New York, 1993, p. 395 Search PubMed.
  16. A. E. Shilov, J. Mol Catal., 1988, 47, 351 CrossRef CAS.
  17. B. R. Cook, T. J. Reinert and K. S. Suslick, J. Am Chem. Soc., 1986, 108, 7281 CrossRef CAS.
  18. K. S. Suslick, B. R. Cook and M. Fox, J. Chem. Soc., Chem. Commun., 1980, 580 RSC.
  19. J. P. Collman, X. Zhang, V. J. Lee, U. S. Uffelman and J. I. Brauman, Science, 1993, 261, 1404 CrossRef CAS.
  20. P. C. H. Mitchell, Chem. Ind., (London), 1991, 308 CAS.
  21. K. D. Karlin, Science, 1993, 261, 701 CAS.
  22. R. Parton, D. De Vos and P. A. Jacobs, in Zeolite Microporous Solids: Synthesis, Structure and Reactivity, ed. Derouane, E. G., Kluwer, Dordrecht, 1992, p. 555 Search PubMed.
  23. F. Bedioui, Chem. Rev., 1995, 144, 39 CrossRef CAS.
  24. X. G. Luo and T. Wang, Huaxue Tongbao, 1996, 4, 10 Search PubMed.
  25. M. Kimura, T. Nishigaki, T. Koyama, K. Hanabusa and H. Shirai, React. Polym., 1994, 23, 195 Search PubMed.
  26. K. Ishihara, N. Kobayashi and I. Ishinohara, Polym. J., 1984, 16, 647 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.