Comparison of total vaporisation and dynamic headspace techniques combined with direct mass spectrometric detection for the on-line analysis of liquid process streams

(Note: The full text of this document is currently only available in the PDF Version )

Warwick B. Dunn, Alan Townshend, Warwick B. Dunn and John D. Green


Abstract

A comparison of dynamic gas purging headspace–mass spectrometry and total vaporisation–mass spectrometry for the on-line analysis of liquid process streams was made. The detection limits (3ς) for acetone in an aqueous matrix for the dynamic headspace and total vaporisation techniques are 0.4 and 11.2 µl ml1, respectively. The relative standard deviations for the determination of 100 µl ml1 and 10% aqueous acetone solutions, respectively, are 9.5 and 1.9% for the dynamic headspace technique and 4.4 and 3.7% for the total vaporisation technique. Analysis frequencies of 20 and 60 h1 were achieved for the dynamic headspace and total vaporisation techniques, respectively. An accurate analysis of acetone present in an 11 component process sample was achieved using the total vaporisation technique. The complexity of the sample matrix did not allow an accurate analysis to be performed using the dynamic headspace technique.


References

  1. F. McLennan, Process Analytical Chemistry, ed. McLennan, F., and Kowalski, B., Blackie Academic and Professional, London, 1995, ch. 1 Search PubMed.
  2. J. B. Callis, D. L. Illman and B. R. Kowalski, Anal. Chem., 1987, 59, 624A CAS.
  3. E. E. Escher, Chem. Eng., 1959, 66, 113 Search PubMed.
  4. I. B. Benson, Spectrosc. Eur., 1995, 7(6), 18 Search PubMed.
  5. A. Smith and M. J. Pettifor, Vacuum, 1982, 32, 175 CrossRef CAS.
  6. J. Koprio, P. Muralt, G. Rettinghaus and G. Strasser, Vacuum, 1990, 41, 2106 CrossRef CAS.
  7. J. L. Briesacher, M. Nakamura and T. Ohmi, J. Electrochem. Soc., 1991, 138, 3717 CAS.
  8. G. D. Cessna, Adv. Instrum. Cont., 1990, 45, 383 Search PubMed.
  9. K. Khan, INTECH, 1993, 40, 40 Search PubMed.
  10. C. F. Robinson, Chem. Eng., 1951, 58, 136 Search PubMed.
  11. J. K. Walker, A. P. Gifford and R. H. Nelson, Ind. Chem. Eng., 1954, 46, 1400 Search PubMed.
  12. M. R. Walsh and M. A. LaPack, ISA Trans., 1995, 34, 67 CrossRef CAS.
  13. N. Srinivasan, N. Kasthurikrishnan, R. G. Cooks, M. S. Krishnan and G. T. Tsao, Anal. Chim. Acta, 1995, 316, 269 CrossRef CAS.
  14. P. J. Savickas, M. A. LaPack and J. C. Tou, Anal. Chem., 1989, 61, 2332 CrossRef CAS.
  15. J. C. Tou and D. Reddy, Anal. Chim. Acta, 1990, 229, 9 CrossRef CAS.
  16. C. Didden and J. Duisings, Proc. Cont. Qual., 1992, 3, 263 Search PubMed.
  17. C. F. Poole and S. K. Poole, Chromatography Today, Elsevier, Oxford, 1991, p. 818 Search PubMed.
  18. F. St-Germain, O. Mamer, J. Brunet, B. Vachon, R. Tardif, T. Abribat, C. D. Rosiers and J. Montgomery, Anal. Chem., 1995, 67, 4536 CrossRef CAS.
  19. J. Namiesnik, T. Gorecki, M. Biziuk and L. Torres, Anal. Chim. Acta, 1990, 237, 1 CrossRef CAS.
  20. G. Baykut and A. Voigt, Anal. Chem., 1992, 64, 677.
  21. A. Townshend, J. D. Green and W. B. Dunn, Anal. Commun., 1995, 32, 361 RSC.
  22. A. Townshend, J. D. Green and W. B. Dunn, Analyst, 1996, 121, 1435 RSC.
  23. D. A. Skoog, Principles of Instrumental Analysis, Saunders College Publishing, London, 3rd edn., 1985, p. 560 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.