Chemical speciation of arsenic in serum of uraemic patients†

(Note: The full text of this document is currently only available in the PDF Version )

Xinrong Zhang, Louis Mees, Rita Cornelis, Raymond Vanholder and Norbert Lameire


Abstract

Chemical speciation of arsenic was carried out in serum of a total of 51 uraemic patients: 19 non-dialysis (ND), 18 haemodialysis (HD) and 14 continuous ambulatory peritoneal dialysis (CAPD) patients. The low molecular mass As species were separated by ion-exchange liquid chromatography and measured on-line by hydride generation atomic absorption spectrometry (HGAAS). The high molecular mass As species were separated by fast protein liquid chromatography, either size-exclusion, ion-exchange or affinity chromatography, and the fractions were digested and measured off-line with HGAAS. The mean total As concentrations in the serum of the three groups of the uraemic patients were significantly higher than the reference value (6.47 ± 4.28, 5.12 ± 5.58 and 4.67 ± 5.41 µg l1 for HD, ND and CAPD patients, respectively, versus the reference value of 0.96 ± 1.52 µg l1). The major As species in serum of the patients were dimethylarsinic acid (DMA) and arsenobetaine. The HD patients showed a significantly higher mean DMA level than ND and CAPD patients. No selective removal of different As species in serum of HD patients was observed after 4 h of haemodialysis. The inorganic As species in serum were bound to proteins, mainly transferrin (about 5–6% of total As in serum). This binding may play an important role in arsenic detoxification.


References

  1. X. Zhang, R. Cornelis, J. De Kimpe, L. Mees and N. Lameire, Clin. Chem., 1997, 43, 406 CAS.
  2. X. Zhang, R. Cornelis, J. De Kimpe, L. Mees, V. Vanderbiesen, A. De Cubber and R. Vanholder, Clin. Chem., 1996, 42, 1231 CAS.
  3. X. Zhang, R. Cornelis, J. De Kimpe, L. Mees, V. Vanderbiesen and R. Vanholder, Fresenius' J. Anal. Chem., 1995, 353, 143 CrossRef CAS.
  4. J. De Kimpe, R. Cornelis, J. Mees, S. Van Lierde and R. Vanholder, Am. J. Nephrol., 1993, 13, 429 Search PubMed.
  5. D. Van Renterghem, R. Cornelis and R. Vanholder, J. Trace Elem. Electrolytes Health Dis., 1992, 6, 169 Search PubMed.
  6. A. Astrug, V. Kuleva, Z. Kiriakov, A. Tomov and R. Djingova, Trace Elem. Med., 1984, 1, 65 Search PubMed.
  7. A. Alvadeo, C. Minoia, S. Segagni and G. Villa, Int. J. Artif. Organs, 1977, 2, 17 Search PubMed.
  8. S. Giovannetti, Q. Maggiore and R. Malvano, Nuclear Activation echniques in the Life Sciences, IAEA Vienna, 1967, pp. 511–515 Search PubMed.
  9. D. Brune, K. Samsahl and P. O. Wester, Clin. Chim. Acta, 1966, 13, 285 CrossRef CAS.
  10. M. Vahter, in Biological Monitoring of Toxic Metals, ed. Clarkson,T. W., Friberg, L., Nordberg, G. F., and Sager, P. R., Plenum Press, New York, 1988, pp. 303–321 Search PubMed.
  11. K. Shiomi, in Arsenic in the Environment, Part II: Human Health and Ecosystem Effects, ed. Nriagu, J. O., Wiley, New York, 1994, pp. 261–282 Search PubMed.
  12. D. J. Thompson, Chem. Biol. Interact., 1993, 88, 89 CrossRef CAS.
  13. M. Vahter and J. Envall, Environ. Res., 1983, 32, 14 CrossRef CAS.
  14. M. Vahter and E. Marafante, in The Biological Alkylation of Heavy Elements, ed. Craig, P. J., and Glockling, F., Special Publication No. 66, Royal Society of Chemistry, London, 1988, pp. 105–119 Search PubMed.
  15. X. Zhang, R. Cornelis, J. De Kimpe and L. Mees, J. Anal. At. Spectrom., 1996, 11, 1075 RSC.
  16. X. Zhang, R. Cornelis, J. De Kimpe and L. Mees, Anal. Chim. Acta, 1996, 319, 177 CrossRef CAS.
  17. X. Zhang, R. Cornelis, J. De Kimpe, L. Mees and N. Lameire, Clin. Chem., in the press Search PubMed.
  18. J. Versieck, L. Vanballenberghe, A. De Kesel, J. Hoste, B. Wallaeys, J. Vandenhaute, N. Baeck, H. Steyaert, A. R. Byrne and F. R. Sunderman, Jr., Anal. Chim. Acta, 1988, 204, 63 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.