Direct species-selective determination of cobalamins by ionspray mass spectrometry and ionspray tandem mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Hubert Chassaigne and Ryszard Łobiński


Abstract

A direct method for the simultaneous compound-specific determination of vitamin B12 (cyanocobalamin), its analogues methylcobalamin, hydroxocobalamin, adenosylcobalamin (coenzyme B12) and cobinamides by ionspray MS was developed. Single and tandem MS modes were compared. For all the compounds except hydroxocobalamin, the most intense ion formation was observed as a result of protonation of the original molecular cation leading to an analytically useful doubly charged ion. For hydroxocobalamin a similar process leads to the loss of the functional group leading to the [Cbl + H]2+ ion, which is analytically useful only in the absence of other cobalamins. Hydroxocobalamin can be determined in the presence of other compounds using the minor [OH-Cbl]+ ion. The calibration curves are linear in the range 0.01–1 µg ml1, which can be extended up to 10 µg ml1 if alternative ions are chosen. Detection limits of 5–40 ng ml1 are obtained. Collision-induced dissociation leads first to the loss of the Co substituent (Me, CN, OH, adenosyl) and thus to a decrease in selectivity. The method was applied to the analysis of a synthetic mixture of the cobalamins and to the determination of hydroxocobalamin in a commercial pharmaceutical preparation.


References

  1. B-12, Vol. 2, Biochemistry and Medicine, ed. Dolphin, D., Wiley, New York, 1982 Search PubMed.
  2. P. Gimsing and E. Nexo, in The Cobalamins, ed. Hall, C. A., Churchill Livingstone, Edinburgh, 1983, p. 1 Search PubMed.
  3. G. Rehner, in Encyclopedia of Analytical Science, ed. Townshend, A., Academic Press, London, 1996, vol. 10, p. 5371 Search PubMed.
  4. K. Akatsuka and I. Atsuya, Fresenius' Z. Anal. Chem., 1989, 335, 200 CrossRef CAS.
  5. US Pharmacopeia, XXII Revision, US Pharmacopeial Convention, Rockville, MD, 1989, p. 1516 Search PubMed.
  6. F. Watanabe, Y. Nakano, E. Stupperich, K. Ushikoshi, S. Ushikoshi, I. Ushikoshi and I. Kitaoka, Anal. Chem., 1993, 65, 657 CrossRef CAS.
  7. D. W. Jacobsen, R. Green, E. V. Quadros and Y. D. Montejano, Anal. Biochem., 1982, 120, 394 CrossRef CAS.
  8. D. Lambert, C. Adjalla, F. Felden, S. Benhayoun, J. P. Nicolas and J. L. Gueant, J. Chromatogr., 1992, 608, 311 CrossRef CAS.
  9. J. Dalbacke and I. Dahlquist, J. Chromatogr., 1991, 54, 383 CrossRef.
  10. H. Iwase, J. Chromatogr., 1992, 590, 359 CrossRef CAS.
  11. C. C. Jansen and J. P. De Kleijn, J. Chromatogr. Sci., 1990, 28, 42 CAS.
  12. P. Viñas, N. Campillo, I. Lopez-Garcia and M. Hernandez-Cordoba, Anal. Chim. Acta, 1996, 318, 319 CrossRef CAS.
  13. P. Viñas, N. Campillo, I. Lopez-Garcia and M. Hernandez-Cordoba, Chromatographia, 1996, 42, 566 CAS.
  14. M. Morita, T. Uehiro and K. Fuwa, Anal. Chem., 1980, 52, 349 CrossRef CAS.
  15. R. D. Smith, J. A. Loo, C. G. Edmonds, C. J. Barinaga and H. R. Udseth, Anal. Chem., 1990, 62, 882 CrossRef CAS.
  16. S. A. Hofstadler, R. Bakhtiar and R. D. Smith, J. Chem. Educ., 1996, 73, A82 CAS.
  17. G. J. Van Berkel, S. A. McLuckey and G. L. Glish, Anal. Chem., 1991, 63, 1098 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.