Simple partial least squares–attenuated total reflectance Fourier transform infrared spectrometric method for the determination of sugars in fruit juices and soft drinks using aqueous standards

(Note: The full text of this document is currently only available in the PDF Version )

F. J. Rambla, S. Garrigues, M. de la Guardia, F. J. Rambla and N. Ferrer


Abstract

A simple analytical procedure was developed for the direct determination of sugars in fruit juices (apple, orange, grape) and soft drinks. The method is based on the partial least squares treatment of attenuated total reflectance Fourier transform infrared spectrometric data obtained in the wavenumber range 4000–700 cm–1 and does not require any sample pre-treatment. Absorbance and first-derivative spectra were employed for measurements, using a reduced set of eight aqueous standard mixtures of glucose, fructose and sucrose at two concentration levels for calibration. The limits of detection found for absorbance measurements were 0.2 g per 100 ml for total sugar and 0.1, 0.1 and 0.03 g per 100 ml for glucose, fructose and sucrose, respectively. Relative standard deviations varied from 1.7 to 2.0% for six independent measurements of individual and total sugar concentration. In the analysis of real and synthetic samples, precise and accurate results were obtained, providing accuracy errors lower than 2% in all cases. Average recoveries of 96 ± 4% for total sugar and between 93 ± 7 and 99 ± 7% for single sugars demonstrate the applicability of the methodology developed to the direct analysis of fruit juice and soft drink samples.


References

  1. H. D. Belitz and W. Grosch, Quimica de los Alimentos, Acribia, Zaragoza, 1988 Search PubMed.
  2. D. C. Harris, Análisis Quimico Cuantitativo, Grupo Editorial Iberoamérica, Mexico, 1992 Search PubMed.
  3. S. K. C. Chang, E. Holm, J. Schwarz and P. Rayas-Duarte, Anal. Chem., 1995, 67, 127R CAS.
  4. D. M. Back, D. F. Michalska and P. L. Polavarapu, Appl. Spectrosc., 1984, 38, 173 CAS.
  5. E. Lanza and B. W. Li, J. Food Sci., 1984, 49, 995 CAS.
  6. D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas and R. P. Eaton, Appl. Spectrosc., 1992, 46, 1575 CAS.
  7. L. A. Marquart, M. A. Arnold and G. W. Small, Anal. Chem., 1993, 65, 3271 CrossRef.
  8. K. H. Hazen, M. A. Arnold and G. W. Small, Appl. Spectrosc., 1994, 48, 477 CAS.
  9. J. H. Hopkinson, C. Moustou, N. Reynolds and J. E. Newbery, Analyst, 1987, 112, 501 RSC.
  10. F. Cadet, D. Bertrand, P. Robert, J. Maillot, J. Dieudonne and C. Rouch, Appl. Spectrosc., 1991, 45, 166 CAS.
  11. E. K. Kemsley, R. H. Wilson, G. Poulder and L. L. Day, Appl. Spectrosc., 1993, 47, 1651 CAS.
  12. F. De Lène Mirouze, J. C. Boulou, N. Dupuy, M. Meurens and J. P. Huvenne, Appl. Spectrosc., 1993, 47, 1187 CAS.
  13. E. K. Kemsley, L. Zhuo, M. K. Hammouri and R. H. Wilson, Food Chem., 1992, 44, 299 CrossRef CAS.
  14. N. Dupuy, M. Meurens, B. Sombret, P. Legrand and J. P. Huvenne, Appl. Spectrosc., 1992, 46, 860 CAS.
  15. K. R. Beebe and B. R. Kowalski, Anal. Chem., 1987, 59, 1007A CrossRef CAS.
  16. M. Blanco, J. Coello, S. Maspoch and A. Ruiz, in Avances en Quimiometría Práctica, ed. Cela, R., Servicio de publicaciones e intercambio científico de la Universidad de Santiago de Compostela, Santiago de Compostela, 1994 Search PubMed.
  17. D. Picque, D. Lefier, R. Grappin and G. Corrieu, Anal. Chim. Acta, 1993, 279, 67 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.