Room temperature phosphorescence optosensor for anthracyclines

(Note: The full text of this document is currently only available in the PDF Version )

Fausto Alava-Moreno, María Jesús Valencia-González, María Jesús Valencia-González and Marta Elena Díaz-García


Abstract

A flow-through optosensor for anthracyclines based on the anthracycline–europium chelate room temperature phosphorescence energy transfer is proposed. The sensor was developed in conjunction with a flow injection analysis system and is based on the transient immobilization on a non-ionic resin (packed in a flow-through cell) of the anthracycline–europium chelate. The analytical performance characteristics of the proposed sensor for semi-automated analysis and control of very low levels of anthracycline were as follows: the detection limits for daunorubicin, doxorubicin and epirubicin were 9.0, 5.8 and 5.8 ng ml1, respectively, with an RSD of 1% for the determination of 0.22 mg ml1 of each anthracycline (n = 10). Most of the common metal ions in biological samples did not interfere, except FeIII, which caused serious interference and should be masked with 1,10-phenanthroline. The recommended method was successfully tested for determination of anthracyclines in clinical samples (urine and pharmaceutical preparations).


References

  1. D. J. Black and R. B. Livingston, Drugs, 1990, 39, 652 Search PubMed.
  2. K. Mross, P. Maessen, W. J. F. van der Vijgh, H. Gall, E. Boven and H. M. Pinedo, J. Clin. Oncol., 1988, 6, 517 Search PubMed.
  3. N. M. Alykov, T. V. Nekrest Yanova and L. V. Yakovleva, Zh. Anal. Khim, 1991, 46, 1642 Search PubMed.
  4. C. S. P. Sastry and J. S. V. M. Lingeswara-Rao, Talanta, 1996, 43, 1827 CrossRef CAS.
  5. H. H. J. L. Ploegmakers, P. A. Moritz, P. J. M. M. Toll and W. J. Van Oort, J. Autom. Chem., 1989, 11, 106 Search PubMed.
  6. E. Van der Vlis, H. Irth, U. R. Tjaden and J. Van der Greef, Anal. Chim. Acta, 1993, 271, 69 CrossRef.
  7. D. Leca and F. R. Leca, Chromatographia, 1993, 35, 435.
  8. J. De Jong, J. B. Vermorken and W. J. F. Van der Vijgh, J. Chromatogr., 1992, 574, 309.
  9. L. M. Hirschy, E. V. Dove and J. D. Winefordner, Anal. Chim. Acta, 1983, 147, 311 CrossRef CAS.
  10. W. De, W. Horrocks, Jr. and D. R. Sidnik, Acc. Chem. Res., 1981, 14, 384 CrossRef CAS.
  11. J. Hemmilä, S. Dakubu, V. M. Mukkala, H. Siitari and T. Lovgren, Anal. Biochem., 1984, 137, 335 CrossRef CAS.
  12. R. Pereiro García, Y. M. Liu, M. E. Díaz García and A. Sanz- Medel, Anal. Chem., 1991, 63, 1759 CrossRef CAS.
  13. F. Alava-Moreno, M. E. Díaz-García and A. Sanz-Medel, Anal. Chim. Acta, 1993, 281, 637 CrossRef CAS.
  14. L. J. Ming and X. D. Wei, Inorg. Chem., 1994, 33, 4617 CrossRef CAS.
  15. A. Sanz-Medel, Anal. Chim. Acta, 1993, 283, 367 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.