Selective fluorescent chemosensor for fructose

(Note: The full text of this document is currently only available in the PDF Version )

G. Pina Luis, M. Granda, M. Granda, R. Badía and Marta Elena Díaz-García


Abstract

A chemosensing system for the selective recognition of fructose based on a reverse photoinduced electron transfer process was developed. A fluorescent boronic acid, m-dansylaminophenylboronic acid, reacts with fructose to produce an electron transfer, which results in the fluorescence quenching of the dye. The addition of the sugar shifted the pKa from 8.13 to 7.80. A possible sensing mechanism is proposed. The analytical figures determined in a batch approach were detection limit 5 × 106M, repeatability of 1% at the 1 × 104M fructose level and linear calibration up to 3 × 104M. A flow injection system was also examined and after the experimental conditions had been optimized a selectivity study showed that only galactose (at a 1:2 fructose to galactose molar ratio) gave a positive deviation. Several food samples were analysed by the proposed flow injection procedure and the results agreed with those obtained using an enzymatic kit for food analysis.


References

  1. J. Rebek, Jr., Angew. Chem., Int. Ed. Engl., 1990, 29, 245 CrossRef.
  2. A. W. Czarnik, ACS Symp. Ser., 1993, No. 538.
  3. L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti and D. Sacchi, Angew. Chem., Int. Ed. Engl., 1994, 33, 1975 CrossRef.
  4. L. Fabbrizzi and A. Poggi, Chem. Soc. Rev., 1995, 24, 197 RSC.
  5. G. K. Walkput and B. Imperiali, J. Am. Chem Soc., 1996, 118, 3053 CrossRef.
  6. R. A. Bissell, E. Calle, A. P. De Silva, S. A. De Silva, H. Q. N. Gunaratne, J. L. Habibjiwan, S. L. A. Peiris, R. A. D. D. Rupasinghe, T. K. S. D. Samarasinghe, K. R. A. S. Sandanayake and J. P. Soumillion, J. Chem. Soc., Perkin Trans. 2, 1992, 9, 1559 RSC.
  7. M. Y. Chae and A. W. Czarnik, J. Am. Chem. Soc., 1992, 114, 9704 CrossRef CAS.
  8. H. Shizuka, M. Nakamura and T. Morita, J. Phys. Chem., 1979, 83, 2019 CrossRef CAS.
  9. M. E. Huston, K. W. Haider and A. W. Czarnik, J. Am. Chem. Soc., 1988, 110, 4460 CrossRef CAS.
  10. A. Pardo, J. M. L. Poyato, E. Martin, J. J. Camacho and D. Reyman, J. Lumin., 1990, 46, 381 CrossRef CAS.
  11. T. D. James, K. R. A. Samankumara-Sandanayake and S. Shinkai, Angew. Chem., Int. Ed. Engl., 1994, 33, 2207 CrossRef.
  12. K. Hamasaki, H. Ikeda, A. Nakamura, A. Ueno, F. Toda, I. Suzuki and T. Osa, J. Am. Chem. Soc., 1993, 115, 5035 CrossRef CAS.
  13. L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, A. Taglietti and D. Sacchi, Chem. Eur. J., 1996, 2, 75 CrossRef CAS.
  14. A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302 CrossRef CAS.
  15. M. J. Valencia González, Y. M. Liu, M. E. Díaz García and A. Sanz-Medel, Anal. Chim. Acta, 1993, 283, 439 CrossRef.
  16. M. J. Valencia González and M. E. Díaz García, Quim. Anal., 1994, 13, 90 Search PubMed.
  17. J. Y. Yoon and A. W. Czarnik, Bioorg. Med. Chem., 1993, 1, 267 CrossRef CAS.
  18. G. De Santis, L. Fabbrizzi, M. Licchelli, N. Sardone and A. H. Velders, Chem. Eur. J., 1996, 2, 1243 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.