Chiral recognition of cellulose tris(5-fluoro-2-methylphenylcarbamate) toward (R)- and (S)-1,1′-bi-2-naphthol detected by electron ionization mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Kozo Matsumoto, Chiyo Yamamoto and Eiji Yashima


Abstract

A new method for the detection of chiral recognition was developed through a mass spectrometric study of the desorption of a chiral guest compound (analyte) from a chiral host compound (adsorbent). Optically active cellulose tris(5-fluoro-2-methylphenylcarbamate) (1) was used as the chiral adsorbent, which has been synthesized and used as a chiral stationary phase (CSP) in high-performance liquid chromatography (HPLC). As the chiral analytes, (R)- and (S)-1,1′-bi-2-naphthol (2) were selected. The phenylcarbamate derivative shows high chiral resolving ability in HPLC and completely resolves the enantiomers of 2 with high selectivity; the (R)-enantiomer elutes first, followed by the (S)-enantiomer. A mixture of (RS)-2 and 1 was ionized by electron ionization using a direct insertion probe operated by temperature programming at 32 °C min1 from 25 to 400 °C. Reconstructed ion current profiles of (R)- and (S)-2 showed different shapes, which may result from their different adsorption and/or desorption from the chiral adsorbent (1). The chiral discrimination in MS was confirmed using partially deuterated 2 and was quite consistent with the HPLC enantioseparation results using 1 as a CSP.


References

  1. M. S. B. Munson and F. H. Field, J. Am. Chem. Soc., 1966, 88, 2621 CrossRef CAS.
  2. H. M. Fales and G. J. Wright, J. Am. Chem. Soc., 1977, 99, 2339 CrossRef CAS.
  3. H. Suming, C. Yaozu, J. Longfei and X. Shuman, Org. Mass. Spectrom., 1986, 21, 7.
  4. Y.-Z. Chen, H. Li, H.-J. Yang, S.-M. Hua, H.-Q. Li, E.-Z. Zhao and N.-Y. Chen, Org. Mass Spectrom., 1988, 23, 821 CAS.
  5. I.-H. Chu, D. V. Deardon, J. S. Bradshaw, P. Huszthy and R. M. Izatt, J. Am. Chem. Soc., 1993, 115, 4318 CrossRef CAS.
  6. F. J. Winkler, D. Stahl and F. Maquin, Tetrahedron Lett., 1986, 27, 335 CrossRef CAS.
  7. F. J. Winkler, R. Medina, J. Winkler and H. Krause, J. Chromatogr., 1994, 666, 549 CrossRef CAS.
  8. G. Hofmeister and J. Leary, Org. Mass Spectrom., 1991, 26, 811 CAS.
  9. M. Sawada, M. Shizuma, Y. Takai, H. Yamada, T. Kaneda and T. Hanafusa, J. Am. Chem. Soc., 1992, 114, 4405 CrossRef CAS.
  10. M. Sawada, Y. Okumura, H. Yamada, Y. Takai, S. Takahashi, T. Kaneda, K. Hirose and S. Misumi, Org. Mass. Spectrom., 1993, 28, 1525 CAS.
  11. M. Sawada, Y. Okumura, M. Shizuma, Y. Takai, Y. Hidaka, H. Yamada, T. Tanaka, T. Kaneda, K. Hirose, S. Misumi and S. Takahashi, J. Am. Chem. Soc., 1993, 115, 7381 CrossRef.
  12. M. Sawada, Y. Takai, H. Yamada, S. Hirayama, T. Kaneda, T. Tanaka, K. Kamada, T. Mizooku, S. Takeuchi, K. Ueno, K. Hirose, Y. Tobe and K. Naemura, J. Am. Chem. Soc., 1995, 117, 7726 CrossRef CAS.
  13. M. Sawada, Y. Takai, H. Yamada, T. Kaneda, K. Kamada, T. Mizooku, K. Hirose, Y. Tobe and K. Naemura, J. Chem. Soc., Chem. Commun., 1994, 2497 RSC.
  14. G. Po'csfalvi, M. Lipta'k, P. Huszthy, J. S. Bradshaw, R. M. Izatt and K. Veke'y, Anal. Chem., 1996, 68, 792 CrossRef CAS.
  15. K. Wang, X. Han, R. W. Gross and G. W. Gokel, J. Am. Chem. Soc., 1995, 117, 7680 CrossRef CAS.
  16. M. Sawada, Y. Takai, T. Kaneda, R. Arakawa, M. Okamoto, H. Doe, T. Matsuo, K. Naemura, K. Hirose and Y. Tobe, J. Chem. Soc., Chem. Commun., 1996, 1736 Search PubMed.
  17. E. Yashima, C. Yamamoto and Y. Okamoto, J. Am. Chem. Soc., 1996, 118, 4036 CrossRef CAS.
  18. E. Yashima, C. Yamamoto and Y. Okamoto, Polym. J., 1995, 27, 856 Search PubMed.
  19. K. Maruoka, T. Itoh, Y. Araki, T. Shirasaka and H. Yamamoto, Bull. Chem. Soc. Jpn., 1988, 61, 2975 CAS.
  20. U.-I. Zahorszky and H. Musso, Chem. Ber., 1973, 106, 3608 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.