Kinetics and mechanism of the reversible ring-opening of thiamine and related thiazolium ions in aqueous solution

(Note: The full text of this document is currently only available in the PDF Version )

Elizabeth C. Carmichael, Valerie D. Geldart, Robert S. McDonald, David B. Moore, Sheila Rose, Lawrence D. Colebrook, Georgia D. Spiropoulos and Oswald S. Tee


Abstract

Kinetic studies of the ring-opening and reclosure reactions of thiamine and three other thiazolium ions (Q+) in aqueous solution, in the pH range 0–13, have been carried out by stopped-flow and conventional UV–VIS spectrophotometry. At high pH, ring-opening of thiamine exhibits a temporary diversion to the well-known ‘yellow form’. Otherwise, the ring-opening reactions are simply first-order in [OH], consistent with rate-limiting attack of hydroxide ion at C(2) of the Q+ ring, producing a pseudobase, T°, which rapidly consumes a second equivalent of hydroxide ion to form the ring-opened enethiolate, ETh. In contrast, ring closure of the enethiol in acidic solution exhibits rather complex kinetic behaviour; two processes are observed for most enethiols, including that derived from thiamine. Both the fast process (a) and the slower process (b) produce the thiazolium ion Q+ and they exhibit pH- and buffer-independent rate plateaux at low pH. Rapid, repetitive UV spectral scans and NMR spectral studies show that the two processes arise from the independent formation of Q+ from the two amide rotamers of the enethiol which do not equilibrate under the reaction conditions. The major amide rotamer (∼75%) gives rise to the fast process (a) and the minor rotamer to the slow reaction (b). The pH–rate profile and buffer catalysis studies reveal that the reclosure reaction undergoes a change in rate-limiting step from uncatalysed formation of T° at low pH to its general acid catalysed breakdown at higher pH. The latter process is characterized by a Brønsted α value of 0.70. Additionally, for process (b), a general base catalysed pathway for formation of T° can be observed, for which the Brønsted β value is 0.74. The mechanistic details of the ring-opening and reclosure pathways are discussed.


References

  1. (a) C. Walsh, Enzyme Reaction Mechanisms, W. H. Freeman, San Fransico, 1979 Search PubMed; (b) H. Dugas, Bioorganic Chemistry: A Chemical Approach to Enzyme Action, Springer-Verlag, New York, 3rd edn., 1989 Search PubMed; (c) J. A. Zoltewicz and G. Uray, Biorg. Chem., 1994, 22, 1 Search PubMed.
  2. (a) Thiamine. Twenty Years of Progress, eds. H. Z. Sable and C. J. Gubler, N.Y. Acad. Sci., New York, 1982(Ann. N.Y. Acad. Sci., 1982, 378, 7–122) Search PubMed; (b) R. Kluger, Chem. Rev., 1987, 87, 863 CrossRef CAS; (c) P. Haake, in Enzyme Mechanisms, ed., M. I. Page and A. Williams, Royal Society of Chemistry, London, 1987 Search PubMed.
  3. J. W. Bunting, Adv. Heterocycl. Chem., 1979, 25, 1 CAS.
  4. (a) R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719 CrossRef CAS; (b) Y. Asahi and M. Nagaoka, Chem. Pharm. Bull. Jpn., 1971, 19, 1017 Search PubMed; (c) H. Nogami, J. Hasegawa and T. Rikihisa, Chem. Pharm. Bull. Jpn., 1973, 21, 858 Search PubMed; (d) J. A. Zoltewicz and G. Uray, J. Org. Chem., 1980, 45, 2104 CrossRef CAS; (e) R. Kluger, J. Chin and T. Smyth, J. Am. Chem. Soc., 1981, 103, 884 CrossRef CAS; (f) M. W. Washabaugh, C. C. Yang, J. T. Stivers and K.-S. Lee, Bioorg. Chem., 1992, 20, 296 CrossRef CAS; (g) M. W. Washabaugh, M. A. Gold and C. C. Yang, J. Am. Chem. Soc., 1995, 117, 7657 CrossRef CAS.
  5. (a) W. H. Mills, L. M. Clark and J. A. Aeschlmann, J. Chem. Soc., 1923, 2353 Search PubMed; (b) L. M. Clark, J. Chem. Soc., 1928, 2313 RSC.
  6. (a) R. F. W. Hopmann, G. P. Brugoni and B. Fol, J. Am. Chem. Soc., 1982, 104, 1341 CrossRef CAS; (b) J. M. El Hage Chahine and J.-E. Dubois, J. Am. Chem. Soc., 1983, 105, 2355; (c) O. S. Tee, G. D. Spiropoulos, R. S. McDonald, V. D. Geldart and D. Moore, J. Org. Chem., 1986, 51, 2150 CrossRef CAS.
  7. (a) J. M. El Hage Chahine and J.-E. Dubois, J. Chem. Soc., Perkin Trans. 2, 1988, 1409 RSC; (b) I. Heiber-Langer, I. Winter and W. Knoche, J. Chem. Soc., Perkin Trans. 2, 1992, 1551 RSC; (c) S. Barrabass, I. Heiber-Langer and W. Knoche, J. Chem. Soc., Perkin Trans. 2, 1994, 131 RSC.
  8. (a) P. Haake and J. M. Duclos, Tetrahedron Lett., 1970, 461 CrossRef CAS; (b) Y. Asahi and E. Mizuta, Talanta, 1972, 19, 567 CrossRef CAS; (c) J. M. Duclos and P. Haake, Biochemistry, 1974, 13, 5358 CrossRef CAS.
  9. (a) G. D. Maier and D. E. Metzler, J. Am. Chem. Soc., 1958, 79, 4386; (b) R. F. W. Hopmann and G. P. Brugoni, Angew. Chem., Int. Ed. Engl., 1981, 20, 961 CrossRef; (c) R. F. W. Hopmann, Ann. N.Y. Acad. Sci., 1982, 378, 32 CAS; (d) M. W. Washabaugh, C. C. Yang, A. D. Hollenbach and P. Chen, Bioorg. Chem., 1993, 21, 170 CrossRef CAS.
  10. (a) M. L. Bender, Mechanisms of Homogeneous Catalysis from Protons to Proteins, Wiley, New York, 1971 Search PubMed; (b) W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1968 Search PubMed; (c) T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper and Row, New York, 3rd edn., 1987 Search PubMed.
  11. (a) B. Capon, A. K. Ghosh and D. M. A. Grieve, Acc. Chem. Res., 1981, 14, 306 CrossRef CAS; (b) J. P. Guthrie, Acc. Chem. Res., 1983, 16, 122 CrossRef CAS; (c) R. A. McClelland and L. J. Santry, Acc. Chem. Res., 1983, 16, 394 CrossRef CAS.
  12. R. S. McDonald, P. Patterson and A. Stevens-Whalley, Can. J. Chem., 1983, 61, 1846 CAS.
  13. A. Fersht, Enzyme Structure and Mechanism, W. H. Freeman, Reading, 2nd edn., 1985 Search PubMed.
  14. J. Metzger, H. Larivé, R. Dennilauler, R. Baralle and C. Gaurat, Bull. Soc. Chim. Fr., 1964, 2868 CAS.
  15. (a) H. Vorsanger, Bull. Soc. Chim. Fr., 1964, 3118 CAS; (b) H. Vorsanger, Bull. Soc. Chim. Fr., 1967, 551 CAS; (c) H. Vorsanger, Bull. Soc. Chim. Fr., 1967, 556 CAS; (d) H. Vorsanger, Bull. Soc. Chim. Fr., 1967, 2124 CAS.
  16. P. De Maria, A. Fini and F. M. Hall, J. Chem. Soc., Perkin Trans. 2, 1974, 1443 RSC.
  17. (a) G. Binsch, Top. Stereochem., 1968, 3, 132 Search PubMed; (b) R. L. Stein, Adv. Protein Chem., 1993, 44, 1 Search PubMed; (c) E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994, pp. 553–555 Search PubMed; (d) Cf. C. Cox, D. Ferraris, N. N. Murthy and T. Lectka, J. Am. Chem. Soc., 1996, 118, 5332 Search PubMed.
  18. O. S. Tee, M. Trani, R. A. McClelland and N. E. Seaman, J. Am. Chem. Soc., 1982, 104, 7219 CrossRef CAS.
  19. (a) A. J. Kirby and P. W. Lancaster, J. Chem. Soc., Perkin Trans. 2, 1972, 1206 RSC; (b) M. F. Aldersley, A. J. Kirby, P. W. Lancaster, R. S. McDonald and C. R. Smith, J. Chem. Soc., Perkin Trans. 2, 1974, 1487 RSC; (c) A. J. Kirby, R. S. McDonald and C. R. Smith, J. Chem. Soc., Perkin Trans. 2, 1974, 1495 RSC; (d) M. F. Aldersley, A. J. Kirby and P. W. Lancaster, J. Chem. Soc., Perkin Trans. 2, 1974, 1504 RSC; (e) T. H. Fife and Duddy, J. Am. Chem. Soc., 1983, 105, 74 CrossRef CAS.
  20. W. P. Jencks and H. F. Gilbert, Pure Appl. Chem., 1977, 49, 1021 CAS.
  21. H. Wahl and M. T. Le Bris, Bull. Soc. Chim. Fr., 1959, 343.
  22. O. S. Tee and B. K. Takasaki, Can. J. Chem., 1985, 63, 3540 CAS.
  23. E. S. Swinbourne, Analysis of Kinetic Data, Nelson, London, 1971 Search PubMed.
  24. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New-York, 1969 Search PubMed; D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and its Applications, Wiley, New York, 1988 Search PubMed; L. M. Mezei, Practical Spreadsheet Statistics and Curve Fitting for Scientists and Engineers, Prentice-Hall, Englewood Cliffs, New Jersey, 1990 Search PubMed.
  25. H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25, 1228 CrossRef CAS.
  26. M. S. Caceci and W. P. Cacheris, Byte, 1986, 9, 340 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.