Proton chemical shifts in NMR. Part 10.1 Bromine and iodine substituent chemical shifts (SCS) and an analysis of the contributions to the SCS in halocyclohexanes

(Note: The full text of this document is currently only available in the PDF Version )

Raymond J. Abraham, Mark A. Warne and Lee Griffiths


Abstract

A model for the prediction of the proton chemical shifts in substituted alkanes (CHARGE4) has been extended to include a variety of bromo- and iodo-alkanes. These include iodo- and bromo-cyclohexane and trans-1,2-dibromocyclohexane, for which the proton chemical shifts in the distinct conformers have been obtained at low temperatures where the ring inversion is slow on the NMR timescale.

The bromine and iodine SCS are shown to be multifunctional. The short range effects (three bonds or less) are calculated from the partial atomic charges obtained from the CHARGE scheme. Bromine and iodine substituents β to a methine proton produce an enhanced SCS, which increases with the number of attached carbons, i.e. RR′CHX > RCHXY (R,R′ = alkyl group). The long range (>three bonds) effects are shown to be due to the electric field of the C–X (X = Br or I) bond plus the steric effect of the halogen atom. This model predicts bromine SCS in a variety of cyclic bromoalkanes over 118 data points with an error of 0.07 ppm, and iodine SCS over 96 data points to 0.09 ppm. Systems considered include halo-ethanes, -propanes, -cyclohexanes, -bornanes, -norbornanes, -adamantanes and -steroids.

The accurate prediction of bromine and iodine SCS together with the previous analyses of the chloro and fluoro SCS allows the proton SCS in axial and equatorial halocyclohexanes to be analysed in terms of the calculated contributions in CHARGE4, i.e. charge, steric, linear electric field and magnetic anisotropy terms.

The β- and γ-halogen SCS are determined by charge effects. The β (CHX) proton chemical shifts are in the order F > I > Br > Cl for both the axial and equatorial conformers. This order is accounted for by a general electronegativity function plus a heavy atom effect (where I > Br > Cl). In contrast the γ (vicinal) proton SCS are in the order F < Cl < Br < I and also show no orientation dependence. These are given by a polarisability functional dependence in CHARGE4.

Protons in a 1,3-syn-diaxial orientation with the substituent, i.e. H-3,5-ax, in the axial conformer are heavily influenced by the direct steric effect of the halogen substituent for Cl, Br and I, but the influence of the C–X linear electric field is also appreciable. The other proton of this methylene group (H-3,5-eq) has a compensating ‘push-pull’ upfield shift. For fluorine no steric effects are observed. The C–X linear electric field term is the dominant interaction for the remaining protons. In particular all the proton SCS in the equatorial conformer (except the β and γ SCS) are given by this term. The general good agreement with the observed SCS supports this interpretation, though the influence of other interactions is possible for certain protons. No C–X anisotropy term was needed in this scheme.

The characterisation of the chlorine, bromine and iodine steric terms shows that the steric term coefficients are proportional to the polarisability, but not to the ionisation energy of the substituent, supporting the interpretation that this term is due to van der Waal’s interactions and not to the quadratic electric field.


References

  1. Part 9, R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1997, 881 Search PubMed.
  2. A. A. Bothner-By and C. Naar-Colin, J. Am. Chem. Soc., 1958, 80, 1728 CrossRef CAS.
  3. A. K. Davis, D. W. Mathieson and P. D. Nicklin, Tetrahedron Lett., 1973, 6, 413 CrossRef.
  4. (a) W. Gschwendtner and H. J. Schneider, J. Org. Chem., 1980, 45, 3507 CrossRef CAS; (b) H.-J. Schneider, U. Buchneit, N. Becker, G. Schmidt and U. Siehl, J. Am. Chem. Soc., 1985, 107, 7027 CrossRef CAS.
  5. H.-J. Schneider and M. Jung, Magn. Reson. Chem., 1988, 26, 679 CAS.
  6. R. J. Abraham and J. Fisher, Magn. Reson. Chem., 1985, 23, 863.
  7. R. J. Abraham, A. P. Barlow and A. E. Rowan, Magn. Reson. Chem., 1989, 27, 1074 CAS.
  8. C. R. Kaiser, R. Rittner and E. A. Basso, Magn. Reson. Chem., 1994, 32, 503 CAS.
  9. R. J. Abraham, M. Edgar, R. P. Glover, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1996, 333 RSC.
  10. R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1997, 31 RSC.
  11. R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1997, 203 RSC.
  12. A. D. Buckingham, Can. J. Chem., 1960, 38, 360.
  13. A. Y. Meyer, N. L. Allinger and Y. Yuh, Isr. J. Chem., 1980, 20, 57 CAS.
  14. PCMODEL (4.0), Serena Software, PO Box 3076, Bloomington, IN, USA, 1986.
  15. GAUSSIAN92, Gaussian Inc., Pittsburgh PA, 1992. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople.
  16. D. Höfner, S. A. Lesko and G. Binsch, Org. Magn. Reson., 1978, 11, 179 Search PubMed.
  17. J. Emsley, J. Feeney and H. Sutcliffe, High Resolution NMR Spectroscopy, vol. 2, app. B, Pergamon Press, Oxford, 1966 Search PubMed.
  18. J. Gasteiger and M. Marsili, Org. Magn. Reson., 1981, 15, 353 Search PubMed.
  19. R. C. Neuman, Jr. and M. L. Rahm, J. Org. Chem., 1966, 31, 1857.
  20. K. G. R. Pachler and P. L. Wessels, J. Mol. Struct., 1969, 3, 207 CrossRef CAS.
  21. A. U. Stepanyants, V. P. Lezina, I. V. Zlokazova and A. P. Schvedchikov, Zh. Anal. Khim., 1976, 31, 1770 Search PubMed.
  22. C. J. Pouchert and J. Behnke, The Aldrich Library of 13 C and 1 H FT NMR Spectra, Aldrich Chemical Company Inc., 1993, vol. 1 Search PubMed.
  23. G. Schrumpf, W. Sanweld and R. Machinek, Mag. Res. Chem., 1987, 25, 11 Search PubMed.
  24. R. C. Fort, Jr. and P. v. R. Schleyer, J. Org. Chem., 1965, 30, 789 CrossRef.
  25. R. J. Abraham and J. Fisher, Magn. Reson. Chem., 1985, 23, 863.
  26. F. W. van Deursen and P. K. Korver, Tetrahedron Lett., 1967, 3923 CrossRef CAS.
  27. F. W. van Deursen and A. C. Udding, Recl. Trav. Chim. Pays-Bas., 1968, 87, 1243 CAS.
  28. R. J. Abraham and G. H. Grant, J. Comput.-Aided Mol. Design, 1992, 6, 273 Search PubMed.
  29. R. J. Abraham and J. S. E. Holker, J. Chem. Soc., 1963, 806 RSC.
  30. W. T. Raynes, A. D. Buckingham and H. J. Bernstein, J. Chem. Phys., 1962, 36, 3481 CrossRef CAS.
  31. M. T. Tribble, M. A. Miller and N. L. Allinger, J. Am. Chem. Soc., 1971, 93, 3894 CrossRef.
  32. M. Grayson and W. T. Raynes, Magn. Reson. Chem., 1995, 33, 138 CAS.
  33. Handbook of Chemistry and Physics, ed. R. C. Weast, S. M. Selby and C. D. Hodgman, The Chemical Rubber Co., Cleveland, 54th edn., 1964 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.