Ab initio quantum mechanical gas phase and reaction field solvation study on the proton abstraction from hydroxyacetaldehyde by formate: implications for enzyme catalysis

(Note: The full text of this document is currently only available in the PDF Version )

Mikael Peräkylä


Abstract

Proton abstraction from a model carbon acid hydroxyacetaldehyde by formate has been studied using ab initio quantum mechanical calculations up to the MP4(SDQ)/6-31+G**//HF/6-31+G* level. Solvation effects are included using the polarisable continuum method. The calculated energies of several intermediates and transition states of the proton transfer reaction are found to be in reasonable agreement with the available experimental data. Calculations show that the α-carbon, which loses a proton in the reaction, retains a substantial amount of sp3 character in the transition state of the reaction. Therefore the resonance-stabilised enolate anion product, in which the α-carbon is sp2 hybridised, develops after the transition state has been passed. Inclusion of solvation energies moves the transition state to an earlier point on the reaction profile. This indicates that in the case of enzyme-catalysed reaction, in which the protein environment presumably can stabilise an enolate-like structure more efficiently than water does, the transition state would be even less enolate-like unless enzymes had other means of enhancing the reaction and making the transition state occur later. We discuss how lowering of the intrinsic reaction barrier and proton tunnelling may move the transition state of the enzyme-catalysed proton abstraction reaction to a later point on the reaction profile.


References

  1. R. P. Bell, The Proton in Chemistry, Chapman and Hall, London, 1973 Search PubMed.
  2. C. F. Bernasconi and P. J. Wenzel, J. Am. Chem. Soc., 1994, 116, 5405 CrossRef CAS.
  3. C. F. Bernasconi, Acc. Chem. Res., 1992, 25, 9 CrossRef CAS.
  4. C. F. Bernasconi, Adv. Phys. Org. Chem., 1992, 27, 119 CAS.
  5. C. F. Bernasconi, P. J. Wenzel, J. R. Keeffe and S. Gronert, J. Am. Chem. Soc., 1997, 119, 4008 CrossRef CAS.
  6. M. Peräkylä, J. Phys. Chem., 1996, 100, 3441 CrossRef.
  7. W. H. Saunders, Jr., J. Am. Chem. Soc., 1994, 116, 5400 CrossRef.
  8. J. A. Gerlt and P. G. Gassman, J. Am. Chem. Soc., 1992, 114, 5928 CrossRef CAS.
  9. J. A. Gerlt, J. W. Kozarich, G. L. Kenyon and P. G. Gassman, J. Am. Chem. Soc., 113, 9667 Search PubMed.
  10. J. A. Gerlt and P. G. Gassman, J. Am. Chem. Soc., 1993, 115, 11 552 CrossRef CAS.
  11. J. A. Gerlt and P. G. Gassman, Biochemistry, 1993, 32, 11 943 CrossRef CAS.
  12. W. W. Cleland and M. M. Kreevoy, Science, 1994, 264, 1887 CrossRef CAS.
  13. P. A. Frey, S. A. Whitt and J. B. Tobin, Science, 1994, 264, 1927 CrossRef CAS.
  14. A. Warshel, A. Papazyan and P. A. Kollman, Science, 1995, 269, 102 CrossRef CAS.
  15. S. Scheiner and T. Kar, J. Am. Chem. Soc., 1995, 117, 6970 CrossRef CAS.
  16. G. Alagona, C. Ghio and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 9855 CrossRef CAS.
  17. M. E. M. Noble, R. K. Wierenga, A.-M. Lambeir, F. R. Opperdoes, A.-M. W. H. Thunnissen, K. H. Kalk, H. Groendijk and W. G. J. Hol, Proteins, 1991, 10, 50 CAS.
  18. J. D. Hermes, S. C. Blacklow and J. R. Knowles, Proc. Natl. Acad. Sci. USA, 1990, 87, 696 CAS.
  19. J. R. Knowles and W. J. Albery, Acc. Chem. Res., 1977, 10, 105 CrossRef CAS.
  20. M. Peräkylä and T. A. Pakkanen, Proteins, 1996, 25, 225 CrossRef CAS.
  21. J. Åqvist and M. Fothergill, J. Biol. Chem., 1996, 271, 10 010 CrossRef CAS.
  22. M. Peräkylä, J. Chem. Soc., Chem. Commun., 1996, 361 RSC.
  23. P. A. Bash, M. J. Field, R. C. Davenport, G. A. Petsko, D. Ringe and M. Karplus, Biochemistry, 1991, 30, 5826 CrossRef CAS.
  24. V. Daggett, F. Brown and P. Kollman, J. Am. Chem. Soc., 1989, 111, 8247 CrossRef CAS.
  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Peterson, J. A. Montgomery, K. Rachavachiri, M. A. Al-Laham, V. G. Zakrzewski, J. V. Oritz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, GAUSSIAN 94 (Revision B.3), Gaussian, Inc. Pittsburgh, PA, 1995.
  26. J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027 CrossRef CAS.
  27. S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117 CrossRef CAS.
  28. K. B. Wiberg, P. R. Rablen, D. J. Rush and T. A. Keith, J. Am. Chem. Soc., 1995, 117, 4261 CrossRef CAS.
  29. W. J. Hehre, L. Radom, P. von Rague Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  30. A. Rastelli, M. Bagatti and R. Gandolfi, J. Am. Chem. Soc., 1995, 117, 4965 CrossRef CAS.
  31. S. Gronert, J. Am. Chem. Soc., 1993, 115, 10 258 CrossRef CAS.
  32. A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735 CrossRef CAS.
  33. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1989, 102, 7211.
  34. The Chemistry of Enols, ed. Z. Rappoport, Wiley, New York, 1990 Search PubMed.
  35. Lange's Handbook of Chemistry, McGraw-Hill, London, 1979 Search PubMed.
  36. J. P. Guthrie and R. Kluger, J. Am. Chem. Soc., 1993, 115, 11 569 CrossRef CAS.
  37. G. S. Hammond, J. Am. Chem. Soc., 1955, 77, 334.
  38. W. C. Alston, II, M. Kanska and C. J. Murray, Biochemistry, 1996, 35, 12 873 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.