Application of the methylenology principle to substitution reactions. A theoretical study

(Note: The full text of this document is currently only available in the PDF Version )

Hendrik Zipse


Abstract

The substitution reaction of chloride with methyl chloride, 2-chloroethyl radical and allyl chloride has been investigated with a number of different ab initio theoretical methods. Depending on the theoretical method chosen, the intrinsic barrier for the SN2′ reaction in allyl chloride is 7–11 kcal mol–1 higher than the barrier for the SN2 reaction in methyl chloride. The reaction of chloride with the 2-chloroethyl radical proceeds through formation of an intermediate complex, which can best be characterized as an ethylene fragment flanked by a resonating chloride anion/chloride radical pair. The overall process has been termed ‘SRN2c’, as nucleophilic substitution occurs in this open shell system with overall ‘cine’ regiochemistry. The intrinsic barrier for the SRN2c reaction is approximately 10 kcal mol–1 lower than that for the SN2 reaction. The differential barrier heights in these three substitution reactions have been rationalized using the valence bond curve crossing model. The high SN2′ barrier is due to a larger initial excitation energy as compared to the SN2 reaction and also to a smaller transition state resonance energy. The very low barrier and the formation of an intermediate in the SRN2c reaction is the consequence of a low lying electronic state, in which homolytic C–Cl bond cleavage has occurred and a C–C double bond is formed. This ‘double bond’ state descends low enough to cross with the Lewis curves used to describe bond breaking and bond making in nucleophilic substitution reactions in general. Only a small initial excitation is necessary to reach the ‘double bond’ state from the electronic ground state. This small initial excitation is the origin of the low barrier for the SRN2c substitution process.


References

  1. H. Zipse, J. Am. Chem. Soc., 1994, 116, 10 773 CrossRef CAS.
  2. H. Zipse, J. Am. Chem. Soc., 1995, 117, 11 798 CrossRef CAS.
  3. H. Zipse, J. Chem. Soc., Perkin Trans. 2, 1996, 1797 RSC.
  4. (a) J. F. Bunnett and R. E. Zahler, Chem. Rev., 1951, 49, 273 CrossRef CAS; (b) H. Heaney, Chem. Rev., 1962, 62, 81 CrossRef CAS; (c) P. Müller, Pure Appl. Chem., 1994, 66, 1077 CrossRef The term ‘SRN2’ suggested earlier1 does not describe the regiochemistry of the reaction as precisely as ‘SRN2c.
  5. (a) S. S. Shaik, H. B. Schlegel and S. Wolfe, Theoretical Aspects of Physical Organic Chemistry—The SN2 Mechanism, Wiley, New York, 1992 Search PubMed; (b) A. Pross, Theoretical and Physical Principles of Organic Reactivity, Wiley, Chichester, 1995 Search PubMed.
  6. GAUSSIAN94, Revision B.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
  7. (a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 1372 CrossRef CAS.
  8. G. Landrum, YAeHMOP, version 1.1a, Cornell University, 1995.
  9. (a) T. N. Truong and E. V. Stefanovich, J. Phys. Chem., 1995, 99, 14 700 CrossRef CAS; (b) M. N. Glukhovtsev, A. Pross and L. Radom, J. Am. Chem. Soc., 1995, 117, 2024 CrossRef CAS; (c) L. Deng, V. Branchadell and T. Ziegler, J. Am. Chem. Soc., 1994, 116, 10 645 CrossRef CAS; (d) F. Jensen, Chem. Phys. Lett., 1992, 196, 368 CrossRef CAS; (e) B. D. Wladkowski, K. F. Lim, W. D. Allen and J. I. Brauman, J. Am. Chem. Soc., 1992, 114, 9136 CrossRef CAS; (f) S. C. Tucker and D. G. Truhlar, J. Am. Chem. Soc., 1990, 112, 3338 CrossRef CAS; (g) S. R. Vande Linde and W. L. Hase, J. Am. Chem. Soc., 1989, 111, 2349 CrossRef CAS; (h) S. C. Tucker and D. G. Truhlar, J. Phys. Chem., 1989, 93, 8138 CrossRef CAS.
  10. J. W. Larson and T. B. McMahon, J. Am. Chem. Soc., 1985, 107, 766 CrossRef CAS.
  11. C. M. Breneman and K. B. Wiberg, J. Comput. Chem., 1990, 11, 431 CrossRef CAS.
  12. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, Gas Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data, Supp. 1, 1988, 17 Search PubMed.
  13. A. Pross and S. S. Shaik, J. Am. Chem. Soc., 1982, 104, 187 CrossRef CAS.
  14. S. S. Shaik, E. Duzy and A. Bartuv, J. Phys. Chem., 1990, 94, 6574 CrossRef CAS.
  15. S. Shaik and A. C. Reddy, J. Chem. Soc., Faraday Trans., 1994, 90, 1631 RSC.
  16. H. Zipse, J. Am. Chem. Soc., 1997, 119, 1087 CrossRef CAS.
  17. H. Zipse, J. Am. Chem. Soc., 1997, 119, 2889 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.