Synthesis, structure and properties of various molecules based on the 4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene system with an evaluation of the effect differing molecular substitution patterns has on the space group symmetry

(Note: The full text of this document is currently only available in the PDF Version )

André Faldt, Frederik C. Krebs and Niels Thorup


Abstract

4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene (3), 2,6,10-tri-tert-butyl-4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene (11) and 2,6,10-tri-tert-butyl-4,8,12-trioxa-12c-methyl-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene (12) have been synthesised and their crystal structures determined. The crystal structure of 4,8,12-trioxa-12c-oxophospha-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene (13) has also been determined for comparison. Compounds 3 and 11 crystallise in non-centrosymmetric space groups. Compound 12 also crystallises in a non-centrosymmetric space group but molecules of opposite chirality are present within the unit cell. Finally compound 13 crystallises in a centrosymmetric space group. The room temperature pyroelectric coefficient of 3 has been determined. The spatial extent of the trioxatriangulene ground system has been perturbed by chemical substitution and the effect of the substitutions upon the space group symmetry of the chemical derivative has been uncovered by X-ray structural resolution. The non-centrosymmetric point group symmetry of the molecules is reflected in a non-centrosymmetric space group symmetry whenever the spatial perturbations do not prohibit the stacking of the molecules.


References

  1. F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press, New York, 1962, pp. 1–23 Search PubMed.
  2. S. T. Liu, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, ed. K.-H. Hellwege, Springer-Verlag, New York, 1979, vol. 11/III, pp. 471–494 Search PubMed.
  3. S. Allen, Molecular Electronics, ed. G. J. Ashwell, Wiley, Taunton, UK, 1992, pp. 207–265 Search PubMed.
  4. A. M. Glass, Appl. Phys. Lett., 1968, 13, 147 CrossRef CAS.
  5. R. L. Byer and C. B. Roundy, Ferroelectrics, 1972, 3, 333 CrossRef CAS.
  6. A. M. Glass, J. Appl. Phys., 1969, 40, 4699 CrossRef CAS.
  7. S. T. Liu and R. B. Maciolek, J. Elec. Mater., 1975, 4, 91 Search PubMed.
  8. W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York, 1950, pp. 78–233 Search PubMed.
  9. J. Sworakowski, Molecular Electronics, ed. G. J. Ashwell, Wiley, Taunton, UK, 1992, pp. 266–331 Search PubMed.
  10. A. Gavezzotti, Acc. Chem. Res., 1994, 27, 309 CrossRef CAS.
  11. D. Y. Curtin and I. C. Paul, Chem. Rev., 1981, 81, 525 CrossRef CAS.
  12. T. Asaji and A. Weiss, Z. Naturforsch., Teil A, 1985, 40, 567.
  13. T. Asaji, M. Taya and D. Nakamura, Phys. Status Solidi, 1987, 102, 815 Search PubMed.
  14. F. C. Krebs, P. S. Larsen, J. Larsen, C. S. Jacobsen, C. Boutton and N. Thorup, J. Am. Chem. Soc., 1997, 119, 1208 CrossRef CAS.
  15. P. Robin, J. C. Facoetti, C. Dubois, P. Dautriche and E. Pourquier, Onde Electr., 1994, 74, 34 Search PubMed.
  16. M. Lofthagen, R. Vernon Clark, K. K. Baldridge and J. S. Siegel, J. Org. Chem., 1992, 57, 61 CrossRef CAS.
  17. J. C. Martin and R. G. Smith, J. Am. Chem. Soc., 1964, 86, 2252 CrossRef CAS.
  18. P. Huszthy, K. Lempert and G. Simig, J. Chem. Soc., Perkin Trans. 2, 1985, 1351 RSC.
  19. N. J. Peters, Ph.D. Dissertation, University of Illinois, 1980, pp. 10–15.
  20. L. Brandsma and H. D. Verkruijsse, Preparative Polar Organometallic Chemistry, Springer-Verlag, Berlin, Heidelberg, 1987, vol. 1, 203 Search PubMed.
  21. A. D. Mighell and J. R. Rodgers, Acta Crystallogr., Sect. A, 1980, 36, 321 CrossRef.
  22. J. C. Wilson, Acta Crystallogr., Sect. A, 1988, 44, 715 CrossRef.
  23. W. R. Cook and H. Jaffe, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, ed. K.-H. Hellwege, Springer-Verlag, New York, 1979, vol. 11/III, pp. 287–470 Search PubMed.
  24. W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York, 1950, pp. 47–48 Search PubMed.
  25. J. Suffert, J. Org. Chem., 1989, 54, 509 CrossRef CAS.
  26. Empirical absorption program (SADABS) written by George Sheldrick for the Siemens SMART platform.
  27. G. M. Sheldrick, SHELXTL95. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1995.
  28. Siemens, SMART and SAINT. Area-Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Winconsin, USA, 1995.
  29. A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C-31.
  30. W. Ackermann, W. Ann. Phys., 1915, 46, 197 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.