C–H · · · C Hydrogen bonding involving ylides

(Note: The full text of this document is currently only available in the PDF Version )

James A. Platts and Sean T. Howard


Abstract

Ab initio calculations on nitrogen and phosphorous ylides, and their complexes with methane and acetylene, are reported. A hydrogen bond strength of 35 kJ mol–1 is found between H3N–CH2 and acetylene at the MP2/6-311++G(3d,3p) level; even with methane as the proton donor some stabilisation (ca. 5 kJ mol–1) is predicted. Complexes of H3P–CH2 are found to be rather less stable (19 kJ mol–1 with acetylene). Topological analysis of the charge density indicates a fundamental difference in the bonding between H3N–CH2 and H3P–CH2, with significant double bond character only in the latter. Atoms in molecules decomposition identifies the source of the hydrogen bond strength to be stabilisation of C in the N ylides and stabilisation of P in the P ylides. The effects of methyl and phenyl substituents on the ylidic carbon are investigated: methyl substitution enhances basicity slightly, but phenyl substitution decreases it dramatically. There is some suggestion that this may be a steric as well as an electronic effect.


References

  1. J. A. Platts, S. T. Howard and K. Wo[l with combining macron]niak, J. Chem. Soc., Commun., 1996, 63 RSC.
  2. G. R. Desiraju, Acc. Chem. Res., 1991, 24, 290 CrossRef CAS.
  3. A. S. Batsanov, M. G. Davidson, J. A. K. Howard, S. Lamb and C. Lustig, J. Chem. Soc., Chem. Commun., 1996, 1791 RSC.
  4. See, for example: (a) D. S. Dudis, J. B. Everhart, T. M. Branch and S. S. Hunnicut, J. Phys. Chem., 1996, 100, 2083 CrossRef CAS; (b) G. B. Backsay, Mol. Phys., 1992, 77, 61 CAS; (c) J. S. Craw and G. B. Backsay, J. Chem. Soc., Faraday Trans., 1992, 88, 2315 RSC; (d) M. J. Frisch, J. A. Pople and J. E. Del Bene, J. Phys. Chem., 1985, 89, 3664 CrossRef CAS.
  5. P. G. Sennikov, J. Phys. Chem., 1994, 98, 6487 and references cited therein.
  6. (a) J. J. Novoa, B. Tarron, M. H. Whangbo and J. M. Williams, J. Chem. Phys., 1991, 95, 5179 CrossRef CAS; (b) I. Alkorta and S. Maluendes, J. Phys. Chem., 1995, 99, 6457 CrossRef CAS.
  7. A. W. Johnson(with special contributions by W. C. Kaska, K. A. O. Starewski and D. A. Dixon), Ylides and Imines of Phosphorous, Wiley, New York, 1993 Search PubMed.
  8. (a) C. Moller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS; (b) J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem., Quantum Chem. Symp., 1976, 10, 1 Search PubMed.
  9. (a) R. Krishnan, J. S. Binkley and J. A. Pople, J. Chem. Phys., 1980, 72, 650 CrossRef CAS; (b) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS; (c) M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265 CrossRef CAS.
  10. GAUSSIAN94 Rev. C3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
  11. S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
  12. (a) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS; (b) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724 CrossRef CAS.
  13. (a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, OUP, New York, 1994 Search PubMed; (b) R. F. W. Bader, Chem. Rev., 1991, 91, 893 CrossRef CAS; (c) R. F. W. Bader, Acc. Chem. Res., 1985, 18, 9 CrossRef CAS.
  14. R. F. W. Bader and H. Essen, J. Chem. Phys., 1984, 80, 1943 CrossRef CAS.
  15. R. F. W. Bader, P. J. MacDougall and C. D. H. Lau, J. Am. Chem. Soc., 1984, 106, 1594 CrossRef CAS.
  16. (a) R. F. W. Bader and C. Chang, J. Phys. Chem., 1989, 93, 2946 CrossRef CAS; (b) M. T. Carroll, J. R. Cheeseman, R. Osman and H. Weinstein, J. Phys. Chem., 1989, 93, 5120 CrossRef CAS.
  17. F. W. Biegler-König, R. F. W. Bader and T.-H. Tang, J. Comput. Chem., 1982, 3, 317 CrossRef.
  18. R. F. W. Bader, J. Chem. Phys., 1980, 73, 2871 CrossRef CAS.
  19. (a) R. F. W. Bader, J. R. Cheeseman, K. E. Laidig, K. B. Wiberg and C. Breneman, J. Am. Chem. Soc., 1990, 112, 6530 CrossRef CAS; (b) R. F. W. Bader and P. F. Zou, Chem. Phys. Lett., 1992, 191, 54 CrossRef CAS; (c) R. Glaser and G. S.-C. Choy, J. Am. Chem. Soc., 1993, 115, 2340 CrossRef CAS.
  20. (a) M. T. Carroll and R. F. W. Bader, Mol. Phys., 1988, 65, 695 CAS; (b) P. L. A. Popelier and R. F. W. Bader, Chem. Phys. Lett., 1992, 189, 542 CrossRef CAS; (c) U. Koch and P. L. A. Popelier, J. Phys. Chem., 1995, 99, 9747 CrossRef CAS; (d) J. A. Platts, S. T. Howard and B. R. F. Bracke, J. Am. Chem. Soc., 1996, 118, 2726 CrossRef CAS.
  21. R. F. W. Bader and C. Chang, J. Phys. Chem., 1989, 93, 5095 CrossRef CAS.
  22. R. F. W. Bader, M. T. Carroll, J. R. Cheeseman and C. Chang, J. Am Chem. Soc., 1989, 109, 7968.
  23. (a) R. F. W. Bader, A. Larouche, C. Gatti, M. T. Carroll, P. J. MacDougall and K. B. Wiberg, J. Chem. Phys., 1987, 87, 1142 CrossRef CAS; (b) K. E. Laidig, Chem. Phys. Lett., 1994, 225, 285 CrossRef CAS; (c) K. E. Laidig, J. Phys. Chem., 1993, 97, 12 760 CrossRef CAS.
  24. (a) W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed; (b) A. E. Reed, L. E. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS; (c) C. M. Breneman and K. B. Wiberg, J. Comput. Chem., 1990, 11, 361 CrossRef CAS.
  25. D. J. Wales, A. J. Stone and P. L. A. Popelier, Chem. Phys. Lett., 1995, 240, 89 CrossRef CAS and references cited therein.
  26. MP2/6-311 ++ G(d,p) optimisations of HN[double bond, length as m-dash]CH2 and H2N–CH3 give N–C distances of 1.281 and 1.465 Å, respectively. The analagous P–C distances are 1.857 and 1.673 Å.
  27. T. Naito, S. Nagase and H. Yamataka, J. Am. Chem. Soc., 1994, 116, 10 080 CrossRef CAS and references cited therein.
  28. L. Nyulászi, T. Veszprémi and J. Réffy, J. Phys. Chem., 1995, 99, 10 142 CrossRef CAS.
  29. J. Emsley, The Elements, OUP, New York, 1989; values of 1.85 and 1.20 Å are reported for C and H Search PubMed.
  30. (a) J. Cosléou, D. G. Lister and A. C. Legon, Chem. Phys. Lett., 1994, 231, 151 CrossRef CAS; (b) A. C. Legon, J. Chem. Soc., Faraday Discuss., 1994, 97, 19 RSC.
  31. L. A. Curtiss, D. J. Frurip and M. Blander, J. Chem. Phys., 1979, 71, 2703 CrossRef CAS.
  32. Y–C bond CP properties in H2N–CH3, ρ= 0.261, ∇2ρ=–0.707, ε= 0.029; HN[double bond, length as m-dash]CH2, ρ= 0.375, ∇2ρ=–0.861, ε= 0.218; H2P–CH3, ρ= 0.151, ∇2ρ= 0.123, ε= 0.131; HP[double bond, length as m-dash]CH2, ρ= 0.184, ∇2ρ=+0.396, ε= 0.395.
  33. M. T. Carroll, C. Chang and R. F. W. Bader, Mol. Phys., 1988, 63, 387 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.