Substituent effect on the allyl vinyl sulfide rearrangement (thio-Claisen rearrangement) and the vinylthioethanimine rearrangement. A theoretical study

(Note: The full text of this document is currently only available in the PDF Version )

Roger Arnaud and Yannick Vallée


Abstract

The transition structures for the [3,3] sigmatropic rearrangements of a variety of substituted allyl vinyl sulfides (X[double bond, length half m-dash]CH) and vinylthioethanimines (X[double bond, length half m-dash]N) H2C[double bond, length half m-dash]CR–S–CH2–CR′[double bond, length half m-dash]XR″ (R = NH2; R′ = BH2, CN; R″ = CF3) have been located using ab initio and DFT (B3LYP) calculations and the 6-31G* basis set. Relative energies have been estimated using post-HF calculations up to the QCISD(T)/6-31G*//B3LYP/6-31G* level. Solvent effects on these processes have been simulated by means of SCRF computations associated with a continuum model. The results show that combined donor–acceptor disubstitutions (R = NH2, R′ = BH2 or CN) improve considerably the reactivity of the allyl vinyl sulfide (vinylthio-ethanimine). Thus, 2-amino-5-cyano disubstitution lowers the enthalpy of activation by 6.6 kcal mol–1 (9.3 kcal mol–1) (1 cal = 4.184 J) and increases the exothermicity of the rearrangement by 13.0 kcal mol–1 (19.1 kcal mol–1). In addition, as the corresponding saddle points are highly polar in nature, an additional transition state stabilization, even in moderately polar solvents, is predicted by the SCRF calculations.


References

  1. P. Metzner, Phosphorus Sulfur Silicon, 1991, 59, 1; P. Metzner, Synthesis, 1992, 1185 CrossRef CAS.
  2. P. Metzner, T. N. Pham and J. Vialle, Nouv. J. Chim., 1978, 2, 179 Search PubMed.
  3. M. Schoufs, J. Meijeir, P. Vermeer and L. Brandsma, Synthesis, 1978, 439 CrossRef CAS.
  4. P. J. W. Schuijl and L. Brandsma, Recl. Trav. Chim. Pays-Bas, 1968, 87, 929 CAS; S. Takano, S. Tomita, M. Takakashi and K. Ogasawara, Chem. Lett., 1987, 1379 CAS.
  5. R. Arnaud, V. Dillet, N. Leon-Pelloux and Y. Vallée, J. Chem. Soc., Perkin Trans. 2, 1996, 2065 RSC.
  6. D. A. Hrovat, K. Morokuma and W. T. Borden, J. Am. Chem. Soc., 1994, 116, 1072 CrossRef CAS.
  7. P. M. Kozlowski, M. Dupuis and E. R. Davidson, J. Am. Chem. Soc., 1995, 117, 774 CrossRef CAS.
  8. GAUSSIAN94 (Revision A.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrewski, J. V. Ortiz, J. B. Foresmen, B. Cioslowski, B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  9. W. J. Here, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  10. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS and references therein P. J. Stevens, F. J. Deerlin, C. F. Clabowski and M. J. Frish, J. Phys. Chem., 1994, 98, 11 623 Search PubMed.
  11. O. Wiest, K. A. Black and K. N. Houk, J. Am. Chem. Soc., 1994, 116, 103 368.
  12. O. Wiest and K. N. Houk, J. Am. Chem. Soc., 1995, 117, 11 628 CrossRef CAS.
  13. J. W. McIver and A. K. Komornicki, J. Am. Chem. Soc., 1972, 94, 2625 CrossRef.
  14. S. Kato and K. Fukui, J. Am. Chem. Soc., 1976, 98, 6395 CrossRef CAS and references therein.
  15. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154 CrossRef.
  16. J. A. Pople, A. P. Scott, M. W. Wong and L. Radom, Isr. J. Chem., 1993, 33, 345 CAS.
  17. For a review, see A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 Search PubMed.
  18. For a description of this program, see E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, NBO3.0 Program Manual, QCPE Program No. 504.
  19. V. Dillet, D. Rinaldi, J. P. Angyan and J. L. Rivail, Chem. Phys. Lett., 1993, 202, 18 CrossRef; V. Dillet, D. Rinaldi and J. L. Rivail, J. Phys. Chem., 1994, 98, 5034 CrossRef CAS.
  20. V. Dillet, D. Rinaldi, J. Bertran and J. L. Rivail, J. Chem. Phys., 1996, 104, 9437 CrossRef CAS.
  21. A. Sehgal, L. Shao and J. Gao, J. Am. Chem. Soc., 1995, 117, 11 337 CrossRef CAS.
  22. L. Pauling, J. Am. Chem. Soc., 1947, 69, 542 CrossRef CAS As suggested by Houk et al.(ref. 23), the constant 0.6 rather than 0.3 is used in the Pauling equation.
  23. K. N. Houk, S. M. Gustavson and K. A. Black, J. Am. Chem. Soc., 1992, 114, 8565 CrossRef CAS.
  24. R. Arnaud, P. Y. Chavant, K. Molvinger and Y. Vallée, J. Chem. Soc., Chem. Commun., 1995, 1897 RSC; V. Barone, R. Arnaud, P. Y. Chavant and Y. Vallée, J. Org. Chem., 1996, 61, 5121 CrossRef CAS.
  25. V. Barone and R. Arnaud, J. Chem. Phys., 1997, 106, 8727 CrossRef CAS.
  26. For a detailed discussion of the relative efficiency of a number of charge calculation methods, see K. B. Wiberg and P. R. Rablen, J. Comput. Chem., 1993, 14, 1504 Search PubMed; M. A. McAllister and T. T. Tidwell, J. Org. Chem., 1994, 59, 4506 CrossRef CAS.
  27. (a) J. M. Guest, J. S. Craw, M. A. Vincent and I. H. Hillier, J. Chem. Soc., Perkin Trans. 2, 1997, 71 RSC; (b) M. M. Davidson, I. H. Hillier and M. A. Vincent, Chem. Phys. Lett., 1995, 246, 536 CrossRef CAS.
  28. M. M. Davidson, I. H. Hillier, R. J. Hall and N. A. Burton, J. Am. Chem. Soc., 1994, 116, 9294 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.