Conformations of calix[5]arenes—a molecular mechanics study

(Note: The full text of this document is currently only available in the PDF Version )

Iris Thondorf and Jörg Brenn


Abstract

The conformational possibilities of p-methylcalix[5]arene 1 and its pentamethyl ether 2 have been assessed by means of molecular mechanics calculations using the TRIPOS and MM3 force fields. Starting from a comprehensive search of the energy hypersurface numerous low energy structures have been identified and analysed. The customary way of describing calixarene conformers by the ‘up’ and ‘down’ arrangement of the aromatic moieties relative to the reference plane through the methylene carbon atoms proved to be inappropriate to assign all computationally generated conformers. Instead, a simple algorithm for the classification of calix[5]arene conformers has been developed. The results of the molecular mechanics calculations are in reasonable agreement with the available experimental data in the case of MM3 but the TRIPOS force field fails to reproduce the stability of the cone conformation of 1. Molecular dynamics simulations indicate that the dynamic behaviour of 1 is characterised by the pseudorotation of the pentagon formed by the methylene carbon atoms on the one hand and by the well-known ring inversion process of calixarenes on the other.


References

  1. For recent reviews on calixarenes see: C. D. Gutsche, Calixarenes; Monographs in Supramolecular Chemisty, ed. J. F. Stoddard, The Royal Society of Chemistry, Cambridge, 1989, vol. 2 Search PubMed; Calixarenes: A Versatile Class of Macrocyclic Compounds, ed. J. Vicens and V. Böhmer, Kluwer Academic Publishers, Dordrecht, 1991 Search PubMed; V. Böhmer, Angew. Chem., Int. Ed. Engl., 1995, 34, 713 Search PubMed.
  2. See for instance: (a) F. Bayard, C. Decoret, D. Pattou, J. Royer, A. Satrallah and J. Vicens, J. Chim. Phys. Phys. Chim. Biol., 1989, 86, 945 CAS; (b) P. D. J. Grootenhuis, P. A. Kollman, L. C. Groenen, D. N. Reinhoudt, G. J. van Hummel, F. Ugozzoli and G. D. Andreetti, J. Am. Chem. Soc., 1990, 112, 4165 CrossRef; (c) T. Harada, J. M. Rudzinski and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1992, 2109 RSC; (d) T. Harada, J. M. Rudzinski, E. Osawa and S. Shinkai, Tetrahedron, 1993, 49, 5941 CrossRef CAS; (e) T. Harada, F. Ohseto and S. Shinkai, Tetrahedron, 1994, 50, 13 377 CrossRef CAS; (f) I. Thondorf, G. Hillig, W. Brandt, J. Brenn, A. Barth and V. Böhmer, J. Chem. Soc., Perkin Trans. 2, 1994, 2259 RSC; (g) C. Grüttner, V. Böhmer, W. Vogt, I. Thondorf, S. Biali and F. Grynszpan, Tetrahedron Lett., 1994, 35, 6267 CrossRef; (h) V. Böhmer, R. Dörrenbächer, M. Frings, M. Heydenreich, D. de Paoli, W. Vogt, G. Ferguson and I. Thondorf, J. Org. Chem., 1996, 61, 549 CrossRef.
  3. C. D. Gutsche and I. Alam, Tetrahedron, 1988, 44, 4689 CrossRef CAS.
  4. For a recent review on calix[5]arenes see: Z. Asfari and J. Vicens, Acros Organics Acta, 1995, 1, 18 Search PubMed.
  5. T. Harada and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1995, 2231 RSC.
  6. D. R. Stewart, M. Krawiec, R. P. Kashyap, W. H. Watson and C. D. Gutsche, J. Am. Chem. Soc., 1995, 117, 586 CrossRef CAS.
  7. J. Brenn and I. Thondorf, presented in part at the 3rd International Calixarene Conference, Fort Worth, May, 1995.
  8. F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, G. F. Mitchell, J. M. Smith and D. G. Watson, J. Chem. Inf. Comp. Sci., 1991, 31, 187 Search PubMed.
  9. S. Usui, K. Deyama, R. Kinoshita, Y. Odagaki and Y. Fukazawa, Tetrahedron Lett., 1993, 34, 8127 CrossRef CAS.
  10. M. Coruzzi, G. D. Andreetti, V. Pocchi, A. Pochini and R. Ungaro, J. Chem. Soc., Perkin Trans. 2, 1982, 1133 RSC.
  11. R. K. Juneja, K. D. Robinson, G. W. Orr, R. H. Dubois, K. A. Belmore, J. L. Atwood, J. A. Ripmeester and C. I. Ratcliffe, J. Inclusion Phenom., 1992, 13, 93 CAS.
  12. G. Barrett, M. A. McKervey, J. F. Malone, A. Walker, F. Arnaud-Neu, L. Guerra, M.-J. Schwing-Weill, C. D. Gutsche and D. R. Stewart, J. Chem. Soc., Perkin Trans. 2, 1993, 1475 RSC.
  13. M. Perrin and S. Lecocq, J. Inclusion Phenom., 1991, 11, 171 CAS.
  14. I. Thondorf, J. Brenn, W. Brandt and V. Böhmer, Tetrahedron Lett., 1995, 36, 6665 CrossRef CAS.
  15. B. König, M. Rödel, P. Bubenitschek, P. G. Jones and I. Thondorf, J. Org. Chem., 1995, 60, 7406 CrossRef.
  16. W. Cui, F. Li and N. L. Allinger, J. Am. Chem. Soc., 1993, 115, 2943 CrossRef CAS and references cited therein.
  17. SYBYL versions 6.0–6.2, Tripos Associates, Inc., St. Louis, MO 63144.
  18. M. Clark, R. D. Cramer and N. van Opdenbosch, J. Comput. Chem., 1989, 10, 982 CrossRef CAS.
  19. MM3(92) is available from the Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN 47405.
  20. N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. Am. Chem. Soc., 1989, 111, 8551 CrossRef CAS; N. L. Allinger, M. Rahman and J.-H. Lii, J. Am. Chem. Soc., 1990, 112, 8293 CrossRef CAS.
  21. J. Gasteiger and M. Marsili, Tetrahedron, 1980, 36, 3219 CrossRef CAS; M. Marsili and J. Gasteiger, Croat. Chem. Acta, 1980, 53, 601 Search PubMed; W. P. Purcell and J. A. Singer, J. Chem. Eng. Data, 1967, 12, 235 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.