EPR study of spin-trapped free radical intermediates formed in the heterogeneously-assisted photodecomposition of acetaldehyde[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Charles A. Jenkins, Damien M. Murphy, Christopher C. Rowlands and Terry A. Egerton


Abstract

Electron paramagnetic resonance spectroscopy is used to detect radical adducts of PBN (α-phenyl N-tert-butyl nitrone) generated by exposure of solutions and suspensions to ambient or high power UV at 300 K. Exposure of acetaldehyde to direct sunlight generates a different PBN radical adduct to high power UV irradiation. Direct sunlight irradiation of deoxygenated acetaldehyde generates PBN–acetyl adducts whereas direct sunlight exposure of oxygenated acetaldehyde produces PBN–acetoxyl adducts. High power UV irradiation of TiO2/acetaldehyde suspensions yields the same radical adduct generated when no TiO2 is present—this adduct (assigned to trapped formyl radicals or PBN degradation products) is produced irrespective of the state of oxygenation of solution. Direct sunlight irradiation of deoxygenated TiO2/acetaldehyde suspension results in the production of PBN–acetyl adducts as the primary species. In oxygenated TiO2/acetaldehyde suspension, PBN–acetyl adducts are again produced as the primary species, together with a weakly adducted secondary species—assigned to PBN–acetoxyl adducts. TiO2 band gap transitions are observed to play no part in the production of radical intermediates in sunlight irradiated acetaldehyde/TiO2 suspension. The extent of non-band gap dependent processes is shown to be sensitive to the surface basicity of the metal oxide. Band gap mediated radical production is demonstrated to arise when acetaldehyde photoreduction is coupled to the concomitant photooxidation of ethanol. Ethanol derived PBN–ethoxy adducts are detected as the primary species arising from sunlight irradiation of both oxygenated and deoxygenated TiO2/acetaldehyde/ethanol suspensions.


References

  1. A. Fujishima and K. Honda, Nature, 1972, 37, 238 .
  2. A. Wold, Chem. Mater., 1993, 5, 280 CrossRef CAS .
  3. W. Choi and M. Hoffmann, Environ. Sci. Technol., 1995, 29, 1646 CAS .
  4. A. Mills, R. H. Davies and D. W. Worsley, Chem. Soc. Rev., 1993, 417 RSC .
  5. P. B. Shepson, T. E. Kleindienst, E. O. Edney, C. M. Nero, L. T. Cupitt and L. D. Claxton, Environ. Sci. Technol., 1986, 20, 1008 CAS .
  6. M. Anpo, T. Shima and K. Kubokawa, Chem. Lett., 1985, 1799 CAS .
  7. J. Schwitzgebel, J. Ekerdt, H. Gerischer and A. Heller, J. Phys. Chem., 1995, 99, 5633 CrossRef CAS .
  8. J. Soria, M. J. Lopez-Munoz, V. Augugliaro and J. C. Conesa, Colloids and Surfaces — A, Physicochemical and Engineering Aspects, 1993, 78, 73 Search PubMed .
  9. M. X. Tang, P. E. Labinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton and N. S. Lewis, Prog. Inorg. Chem., 1994, 41, 21 .
  10. M. Grätzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Florida, 1994, pp. 87–149 Search PubMed .
  11. R. F. Howe and M. Grätzel, J. Phys. Chem., 1987, 91, 3906 CrossRef CAS .
  12. H. Noda, K. Oikawa, H. Ohya-Nishiguchi and H. Kamada, Bull. Chem. Soc. Jpn., 1994, 67, 2031 CAS .
  13. P. Kamat, Prog. Reaction Kinetics, 1994, 19, 277 Search PubMed .
  14. C. Joyce-Pruden, K. Li and J. K. Pross, J. Org. Chem., 1992, 57, 5887 .
  15. E. Coresa, L. Burlamacchi and M. Visca, J. Mater. Sci., 1983, 18, 289 CrossRef .
  16. C. Jaeger and A. Bard, J. Phys. Chem., 1979, 83, 3146 CrossRef CAS .
  17. C. Von Sonntag, The Chemical Basis of Radiation Biology, Taylor & Francis, London, 1987, pp. 37–38 Search PubMed .
  18. M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis and E. Giamello, J. Phys. Chem., 1985, 89, 5689 CrossRef CAS .
  19. Handbook of Organic Chemistry, ed. J. A. Dean, McGraw-Hill, New York, 1987, p. 261 Search PubMed .
  20. G. Stewart and M. A. Fox, Res. Chem. Intermed., 1995, 21, 933 CAS .
  21. N. A. Clinton, R. A. Kenley and T. G. Traylor, J. Am. Chem. Soc., 1975, 97, 3746 CrossRef CAS .
  22. W. A. Pryor, D. G. Prier and D. F. Church, J. Am. Chem. Soc., 1983, 105, 2883 CrossRef CAS .
  23. J. F. Griffiths and G. Shirrow, Oxidation and Combustion Reviews, vol. 3, ed. C. F. H. Tipper, Elsevier, Amsterdam, 1968, p. 47 Search PubMed .
  24. J. A. Howard, Advances in Free Radical Chemistry, Vol. IV, ed. G. A. WilliamsAcademic Press, New York, 1972, p. 49 Search PubMed .
  25. W. A. Pryor, G. Govindan and D. F. Church, J. Am. Chem. Soc., 1982, 104, 7563 CrossRef CAS .
  26. A. Halpern, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 219 RSC .
  27. J. Fossey, D. Lefert and J. Sobra, Free Radicals in Organic Chemistry, Wiley, New York, 1995, p. 96 Search PubMed .
  28. C. S. Turchi and D. F. Ollis, J. Catal., 1990, 122, 178 CrossRef CAS .
  29. X. L. Zhou and J. P. Cowin, J. Phys. Chem., 1996, 100, 1055 CrossRef CAS .
  30. A. Ledwith, P. J. Russel and L. H. Sutcliffe, Proc. R. Soc. Lond. A, 1973, 332, 151 CAS .
  31. A. G. Fadnis, J. Ind. Chem. Soc., 1990, 67, 682 Search PubMed .
  32. H. A. Edwards, C. C. Rowlands, A. F. Carley, M. W. Roberts, B. Mile, F. E. Hancock and S. D. Jackson, J. Chem. Soc., Faraday. Trans. 1, 1994, 90, 3341 Search PubMed .
  33. K. M. Schaich and D. C. Borg, Autoxidation in Food and Biological Systems, eds. M. G. Simic and M. Karel, Plenum Press, New York, 1980, pp. 71–88 Search PubMed .
  34. P. Maillard, J. C. Masset and C. Giannoti, J. Organomet. Chem., 1978, 159, 219 CrossRef CAS .
  35. A. N. Saprin and L. H. Piette, Arch. Biochem. Biophys. Res. Commun., 1977, 180, 480 Search PubMed .
  36. M. J. Davies and G. S. Timmins, Biomedical Applications of Spectroscopy, eds. R. J. H. Clark and R. E. Hester, John Wiley, 1996, pp. 237–241 Search PubMed .
Click here to see how this site uses Cookies. View our privacy policy here.