On the radical Brook and related reactions: an ab initio study of some (1,2)-silyl, germyl and stannyl translocations

(Note: The full text of this document is currently only available in the PDF Version )

Carl H. Schiesser and Michelle L. Styles


Abstract

Ab initio molecular orbital calculations using a (valence) double-ζ pseudopotential basis set (DZP) with (MP2, QCISD) and without (SCF) the inclusion of electron correlation predict that the transition states (12–14) involved in homolytic (1,2)-translocation reactions of silyl (SiH3), germyl (GeH3) and stannyl (SnH3) groups between carbon centres, between carbon and nitrogen, and between carbon and oxygen proceed via homolytic substitution mechanisms involving front-side attack at the group (IV) heteroatom. While migrations between carbons are predicted to be unlikely, with calculated activation barriers of 71–137 kJ mol–1, depending on the level of theory, migrations from carbon to nitrogen and from carbon to oxygen are predicted to be facile. For example, rearrangement of the (silylmethyl)aminyl radical (H3SiCH2NH˙) to the silylaminomethyl species (H3SiNHCH2˙) is predicted to proceed with a barrier of 50.8–63.2 kJ mol–1 when electron correlation is included, in excellent agreement with experimental data. In addition, the analogous translocation to oxygen in the silylmethoxyl radical (H3SiCH2O˙), the prototypical radical Brook rearrangement, is calculated to require only 19.9 kJ mol–1 at the MP2/DZP + ZPVE level. Somewhat unexpectedly, MP2/DZP calculations predict that the stannylmethoxyl radical (H3SnCH2O˙) rearranges to the stannyloxymethyl radical (H3SnOCH2˙) without barrier.


References

  1. C. H. Schiesser and L. M. Wild, Tetrahedron, 1996, 52, 13 265 CrossRef CAS and references cited therein.
  2. J. C. Dalton and R. A. Bourque, J. Am. Chem. Soc., 1981, 103, 699 CrossRef CAS; Y.-M. Tsai and C.-D. Cherng, Tetrahedron Lett., 1991, 32, 3515 CrossRef CAS.
  3. S. Kim and J. S. Koh, J. Chem. Soc., Chem. Commun., 1992, 1377 RSC; S. Kim, S. Lee and J. S. Koh, J. Am. Chem. Soc., 1991, 113, 5106 CrossRef CAS; S. Kim and K. M. Lim, J. Chem. Soc., Chem. Commun., 1993, 1152 RSC; S. Kim and K. M. Lim, Tetrahedron Lett., 1993, 34, 4851 CrossRef CAS; S. Kim, J. Y. Do and K. M. Lim, J. Chem. Soc., Perkin Trans. 1, 1994, 2517 RSC.
  4. S. Kim, J. Y. Do and K. M. Lim, Chem. Lett., 1996, 669 CAS.
  5. A. G. Davies and M.-W. Tse, J. Organomet. Chem., 1978, 155, 25 CrossRef CAS; P. J. Barker, A. G. Davies, J. A.-A. Hawari and M.-W. Tse, J. Chem. Soc., Perkin Trans. 2, 1980, 1488 RSC.
  6. A. Alberti and A. Hudson, Chem. Phys. Lett., 1977, 48, 331 CrossRef CAS; A. I. Prokof'ev, T. I. Prokof'eva, I. S. Belostotskaya, N. N. Bubnov, S. P. Solodovnikov, V. V. Ershov and M. I. Kabachnik, Tetrahedron, 1979, 35, 2471 CrossRef CAS; Y. J. Lee, C. P. Lee, Y. T. Jeon, P. S. Mariano, U. C. Yoon, D. U. Kim, J. C. Kim and J. G. Lee, Tetrahedron Lett., 1993, 34, 5855 CrossRef CAS.
  7. C. G. Pitt and M. S. Fowler, J. Am. Chem. Soc., 1968, 90, 1928 CrossRef CAS.
  8. R. West and P. Boudjouk, J. Am. Chem. Soc., 1973, 95, 3983 CrossRef CAS; J. M. Harris, I. MacInnes, J. C. Walton and B. Maillard, J. Organomet. Chem., 1991, 403, C25 CrossRef CAS.
  9. J. M. Harris, J. C. Walton, B. Maillard, S. Grelier and J.-P. Picard, J. Chem. Soc., Perkin Trans. 2, 1993, 2119 RSC.
  10. B. P. Roberts and A. R. Vazquez-Persaud, J. Chem. Soc., Perkin Trans. 2, 1995, 1087 RSC.
  11. M. C. Fong and C. H. Schiesser, Aust. J. Chem., 1992, 45, 475 CrossRef CAS.
  12. B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1996, 2719 RSC.
  13. C. H. Schiesser, M. L. Styles and L. M. Wild, J. Chem. Soc., Perkin Trans. 2, 1996, 2257 RSC.
  14. C. H. Schiesser and M. L. Styles, unpublished.
  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Revision B.3, Gaussian Inc., Pittsburgh, PA, 1995.
  16. W. J. Hehre, L. Radom, P. v. R. Schleyer and P. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  17. W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284 CrossRef CAS; P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270 CrossRef CAS; P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299 CrossRef CAS.
  18. A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, Chem. Phys. Lett., 1993, 208, 237 CrossRef.
  19. T. H. Dunning and P. J. Hay, Modern Theoretical Chemistry, Plenum, New York, 1976, ch. 1, pp. 1–28 Search PubMed.
  20. C. H. Schiesser and B. A. Smart, Tetrahedron, 1995, 51, 6051 CrossRef; C. H. Schiesser, B. A. Smart and T.-A. Tran, Tetrahedron, 1995, 51, 3327 CrossRef; C. H. Schiesser, B. A. Smart and T.-A. Tran, Tetrahedron, 1995, 51, 10 651 CrossRef; C. H. Schiesser and B. A. Smart, J. Comput. Chem., 1995, 16, 1055 CrossRef CAS.
  21. J. T. Russell, H. S. Rzepa and D. A. Widdowson, J. Chem. Soc., Chem. Commun., 1983, 625 RSC.
  22. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef; M. J. S. Dewar, C. Jie and J. Yu, Tetrahedron, 1993, 49, 5003 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.