Free radical in blood: a measure of haemoglobin autoxidation in vivo?[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Dimitri A. Svistunenko, Nathan A. Davies, Michael T. Wilson, Ray P. Stidwill, Mervyn Singer and Chris E. Cooper


Abstract

The EPR spectrum of whole human or animal blood, measured at 77 K, exhibits a free radical signal identical to that observed when purified methaemoglobin (metHb) reacts with H2O2. This signal is usually attributed to a globin-based radical formed as a result of two electron oxidation of metHb. We have recently proposed a mechanism to account for the formation of these globin radicals in blood. H2O2 is produced in small amounts via dismutation of O2˙– formed during normal autoxidation of haemoglobin and this H2O2 then reacts with metHb to form the radical. This mechanism allows us to explain the variability (fluctuations) in metHb and free radical concentrations in apparently identical samples of frozen blood. In the present work we further confirm that the fluctuations are caused by sample freezing. We also show that the range of fluctuations of both metHb and free radical EPR signals in human venous blood decreases with increasing time of incubation at room temperature under aerobic conditions, and the fluctuations are completely absent after three hours. This may be understood as an effect of increasing the oxygenation of the venous blood. When fully oxygenated, haemoglobin autoxidation is suppressed; therefore O2˙– is not produced in significant amounts and H2O2 is not formed on sample freezing. To confirm this interpretation we have studied venous and arterial rat blood and found that the free radical concentration is low and does not fluctuate (neither did metHb) in the oxygenated arterial blood, while venous rat blood shows the inverse fluctuations similar to those observed previously in human venous blood. We therefore conclude that the intensity of the free radical and metHb signals in frozen blood samples can be used as a measure of haemoglobin autoxidation and O2˙– production in blood.


References

  1. M. K. Pulatova, G. T. Rikhireva and Z. V. Kuropteva, Electron Paramagnetic Resonance in Molecular Radiobiology, Energoatomizdat, Moscow, 1989 Search PubMed.
  2. G. A. Chernov, T. G. Shlyakova, V. L. Sharygin, V. G. Sharf, I. N. Todorov, Y. I. Mitrokhin, O. I. Efremova, D. S. Khristianovich, T. V. Rozantseva and M. K. Pulatova, Izv. Akad. Nauk SSSR, Ser. Biol., 1994, 1, 20 Search PubMed.
  3. B. Commoner and J. I. Ternberg, Proc. Natl. Acad. Sci. USA, 1961, 47, 1374 CAS.
  4. L. A. Blumenfeld, A. E. Kalmanson, I. G. Kharitonenkov and A. G. Chetverikov, in Mechanism and Kinetics of Fermental Katalysis, Nauka, Moscow, 1964, pp. 83–106 Search PubMed.
  5. D. A. Svistunenko, R. P. Patel, S. V. Voloshchenko and M. T. Wilson, J. Biol. Chem., 1997, 272, 7114 CrossRef CAS.
  6. J. F. Gibson and D. J. E. Ingram, Nature, 1956, 178, 871 CAS.
  7. K. N. King and M. E. Winfield, J. Biol. Chem., 1963, 238, 1520.
  8. K. N. King, F. D. Looney and M. E. Winfield, Biochim. Biophys. Acta, 1967, 133, 65.
  9. D. A. Svistunenko, R. P. Patel and M. T. Wilson, Free Radical Res., 1996, 24, 269 Search PubMed.
  10. R. P. Patel, D. A. Svistunenko, V. M. Darley-Usmar, M. C. R. Symons and M. T. Wilson, Free Radical Res., 1996, 25, 117 Search PubMed.
  11. S. Cannistraro, F. Ianzini and P. L. Indovina, Stud. Biophys., 1981, 86, 163 Search PubMed.
  12. R. Aasa, Biochem. Biophys. Res. Commun., 1972, 49, 806 CrossRef CAS.
  13. E. I. Solomon, in Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, ed. K. D. Karlin and J. Zubieta, Adenine Press, New York, 1983, pp. 1–22 Search PubMed.
  14. E. Freiden, in Metal Ions in Biological Systems, ed. H. Siegal, Marcel Dekker Inc., New York, 1981, pp. 117–142 Search PubMed.
  15. J. E. Bennett, J. F. Gibson and D. J. E. Ingram, Proc. R. Soc. London, Ser. A, 1957, 240, 67.
  16. W. E. Blumberg and J. Peisach, in Probes of structure and function of macromolecules and membranes. Vol. 2, ed. B. Chance, T. Yonetani and A. S. Mildvan, Academic Press, New York, 1971, pp. 215–229 Search PubMed.
  17. T. Yonetani and H. Schleyer, J. Biol. Chem., 1967, 242, 1974 CAS.
  18. C. E. Cooper, E. S. R. Green, C. A. Rice-Evans, M. J. Davies and J. M. Wrigglesworth, Free Radical Res. Commun., 1994, 20, 219 Search PubMed.
  19. K. Shikama, Biochem. J., 1984, 223, 279 CAS.
  20. R. E. Brantley, S. J. Smerdon, A. J. Wilkinson, E. W. Singleton and J. S. Olson, J. Biol. Chem., 1993, 268, 6995 CAS.
  21. C. Balagopalakrishna, P. T. Manoharan, O. O. Abugo and J. M. Rifkind, Biochemistry, 1996, 35, 6393 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.