Chemiluminescence of 1,1′-biisoquinolinium and 2,2′-biquinolinium salts. Reactions of electron-rich olefins with molecular oxygen

(Note: The full text of this document is currently only available in the PDF Version )

Yukie Mori, Kumiko Isozaki and Koko Maeda


Abstract

2,2′-Dialkyl-1,1′-biisoquinolylidenes (BIQ), having been prepared by two-electron reduction of the corresponding diquaternary salts BIQ2+(X)2, react with triplet dioxygen to produce chemiluminescence (CL). In aprotic solvents, the kinetics of the reaction are first-order with respect to the concentrations of the substrate and of oxygen. The second-order rate constants at 25 °C increase in the order DMF < MeCN DMSO, which correlate with the free energy change for an electron-transfer (ET) from BIQ to O2, although this process is endothermic in all three solvents. In non-polar solvents such as benzene, the reaction proceeds much more slowly. From these results, a reaction mechanism is proposed as follows. An ET or partial charge-transfer gives a radical ion pair {BIQ˙+ · · · O2˙} or a CT complex, in which intersystem crossing takes place from the triplet to the singlet state, and then radical coupling at the 1-position followed by cyclisation yields a 1,2-dioxetane, the postulated intermediate of the CL reaction. An electron-rich olefin having a closely related structure, 1,1′-dimethyl-2,2′-bisquinolylidene (BQ), shows a similar redox behaviour to that of BIQ. Reaction of BQ with O2 produces CL, and the emitter has been identified as the singlet excited state of 1-methyl-2(1H)-quinolinone 8a. The effects of substituents in the quinoline ring on the autoxidation rate have been investigated in MeCN and DMSO. An olefin having the more negative oxidation potential shows the higher reactivity to O2, suggesting that the autoxidation of BQ should take place via a similar reaction pathway as that of BIQ.


References

  1. S. F. Mason and D. R. Roberts, J. Chem. Soc., Chem. Commun., 1967, 476 RSC.
  2. R. A. Henry and C. A. Heller, J. Luminescence, 1971, 4, 105 Search PubMed.
  3. C. A. Heller, R. A. Henry and J. M. Fritsch, in Chemiluminescence and Bioluminescence, ed. M. J. Cormier, D. M. Hercules and J. Lee, Plenum Press, New York, 1973, p. 249 Search PubMed.
  4. K. Maeda, Y. Matsuyama, K. Isozaki, S. Yamada and Y. Mori, J. Chem. Soc., Perkin Trans. 2, 1996, 121 RSC.
  5. Y. Mori, Y. Matsuyama, S. Yamada and K. Maeda, Acta Crystallogr., Sect. C, 1992, 48, 894 CrossRef.
  6. Y. Mori, Y. Matsuyama, J. Suzuki, Y. Ishii, S. Yamada and K. Maeda, Acta Crystallogr., Sect. C, 1993, 49, 1398 CrossRef.
  7. K. Yamaguchi, Y. Ikeda and T. Fueno, Tetrahedron, 1985, 41, 2099 CrossRef CAS.
  8. Z. Shi, V. Goulle and R. P. Thummel, Tetrahedron Lett., 1996, 37, 2357 CrossRef CAS.
  9. D. T. Breslin and M. A. Fox, J. Am. Chem. Soc., 1993, 115, 11716 CrossRef CAS.
  10. W. Adam and W. J. Baader, J. Am. Chem. Soc., 1985, 107, 410 CrossRef CAS.
  11. G. B. Schuster, Acc. Chem. Res., 1979, 12, 366 CrossRef CAS.
  12. L. H. Catalani and T. Wilson, J. Am. Chem. Soc., 1989, 111, 2633 CrossRef CAS.
  13. For examples, W. Adam, R. Fell and M. H. Schulz, Tetrahedron, 1993, 49, 2227 Search PubMed; F. McCapra, Tetrahedron Lett., 1993, 34, 6941 CrossRef CAS.
  14. R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36, 706 CrossRef CAS.
  15. M. Tsushima, K. Tokuda and T. Ohsaka, Anal. Chem., 1994, 66, 4551 CrossRef CAS.
  16. G. Eberlein and T. C. Bruice, J. Am. Chem. Soc., 1983, 105, 6685 CrossRef CAS.
  17. D. T. Sawyer and E. J. Nanni, in Oxygen and oxy-radicals in chemistry and biology, ed. M. A. Rodgers and E. L. Powers, Academic Press, New York, 1982, pp. 15–44 Search PubMed.
  18. E. J. Nanni, Jr., C. T. Angelis, J. Dickson and D. T. Sawyer, J. Am. Chem. Soc., 1981, 103, 4268 CrossRef.
  19. Y. Yoshioka, S. Yamanaka, S. Yamada, T. Kawakami, M. Nishino, K. Yamaguchi and A. Nishinaga, Bull. Chem. Soc. Jpn., 1996, 69, 2701 CAS.
  20. N. J. Turro, Tetrahedron Lett., 1985, 41, 2089 CrossRef CAS.
  21. C. A. Heller, Adv. Chem. Ser., 1968, p. 225 Search PubMed.
  22. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  23. J. E. Dickeson and L. A. Summers, J. Heterocycl. Chem., 1970, 7, 401 CAS.
  24. A. L. Rieger and P. H. Rieger, J. Phys. Chem., 1984, 88, 5845 CrossRef CAS.
  25. C. S. Johnson, Jr., Adv. Magn. Reson., 1965, 1, 33 Search PubMed.
  26. F. C. Adam, Can. J. Chem., 1971, 49, 3524 CAS.
  27. P. D. Sullivan and M. L. Williams, J. Am. Chem. Soc., 1976, 98, 1711 CrossRef CAS.
  28. M. Tiecco, L. Testaferri, M. Tingoli, D. Chianelli and M. Montanucci, Synthesis, 1984, 736 CrossRef CAS.
  29. P. Desos, G. Schlewer and C. G. Wermuth, Heterocycles, 1989, 28, 1085 CrossRef CAS.
  30. H. Balli and D. Schelz, Helv. Chim. Acta, 1970, 53, 1903 CrossRef CAS.
  31. C. E. Kaslow and D. J. Cook, J. Am. Chem. Soc., 1945, 67, 1969 CrossRef CAS.
  32. J. Lee and H. H. Seliger, Photochem. Photobiol., 1965, 4, 1015 CAS.
  33. J. J. P. Stewart, MOPAC Ver. 6.0, QCPE No. 455; Revised as Ver. 6.01 by T. Hirano, Ochanomizu University.
Click here to see how this site uses Cookies. View our privacy policy here.