Microscopic acid–base equilibria of a synthetic hydroxamate siderophore analog, piperazine-1,4-bis(N-methylacetohydroxamic acid)

(Note: The full text of this document is currently only available in the PDF Version )

M. Amélia Santos, M. Alexandra Esteves, M. Cândida Vaz, J. J. R. Fraústo da Silva, Bela Noszal and Etelka Farkas


Abstract

The protonation behavior of the cyclic diaminodihydroxamate ligand, piperazine-1,4-bis(N-methylacetohydroxamic acid) (H2L1), has been studied at both the macroscopic and the microscopic level. Potentiometric and 1H NMR techniques have been used for the study of this ligand as well as several model compounds: N-methylchloroacetohydroxamic acid, glycinehydroxamic acid and piperidino(N-methylacetohydroxamic acid). Molecular modeling calculations have also been performed to predict the most stable conformations and to estimate relevant contributions to the overall protonation process.

The results of the protonation microconstants show that the N-donors in H2L1 are much less basic than the O-donors. The protonated amine moieties release most of their protons in the acid region while the deprotonation of the hydroxamate moieties starts only above pH 5. The theoretical modeling calculations show the effect of electrostatic interactions and internal hydrogen bonds on the interactivity of the basic sites throughout the protonation process.


References

  1. B. F. Matzanke, G. Mueller and K. N. Raymond, in Iron Carriers and Iron Proteins, ed. T. M. Loehr, VCH, New York, 1989, ch. 1 Search PubMed; K. N. Raymond, Pure Appl. Chem., 1994, 66, 773 Search PubMed.
  2. A. L. Crumblis, in Handbook of Microbial Iron Chelates, ed. G. Winkelmann, CRC Press, Boca Raton, FL, 1991, ch. 7 Search PubMed.
  3. M. A. Santos, M. A. Esteves, M. C. T. Vaz and M. L. S. Gonçalves, Inorg. Chim. Acta, 1993, 214, 47 CrossRef CAS.
  4. M. A. Esteves, M. C. T. Vaz, M. L. S. Gonçalves, E. Farkas and M. A. Santos, J. Chem. Soc., Dalton Trans., 1995, 2565 RSC.
  5. M. A. Santos, M. A. Esteves, M. C. T. Vaz and M. L. S. Gonçalves, J. Chem. Soc., Dalton Trans., 1993, 927 RSC.
  6. M. A. Santos, M. A. Esteves and J. M. G. Martinho, J. Chem. Soc., Dalton Trans., 1993, 3123 RSC.
  7. C. J. Carrano and K. N. Raymond, J. Am. Chem. Soc., 1978, 100, 5371 CrossRef CAS.
  8. J. R. Ascenso, M. A. Santos, J. J. R. Fraústo da Silva, M. Cândida, M. C. T. Vaz and M. G. B. Drew, J. Chem. Soc., Perkin Trans. 2, 1990, 2215 Search PubMed.
  9. T. L. Sayer and D. L. Rabenstein, Can. J. Chem., 1976, 54, 3392 CAS.
  10. B. Kurzak, H. Kozlowski and E. Farkas, Coord. Chem. Rev., 1992, 114, 169 CrossRef CAS.
  11. H. Irving and L. D. Pettit, J. Chem. Soc., 1963, 3051 RSC.
  12. A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum Press, New York, 1975, vol. 6 Search PubMed.
  13. J. L. Sudmeier and C. N. Reilley, Anal. Chem., 1964, 36, 1699; 1707.
  14. J. F. Desreux, E. Merciny and M. F. Loncin, Inorg. Chem., 1981, 20, 987 CrossRef CAS.
  15. E. Farkas, T. Kiss and B. Kurzak, J. Chem. Soc., Perkin Trans. 2, 1990, 1255 RSC.
  16. M. A. Santos, A. M. Lobo and S. Prabhakar, Rev. Port. Quím., 1989, 31, 48 Search PubMed.
  17. J. Rodrigues, J. Comput. Chem., 1994, 15, 183 CrossRef.
  18. B. H. Besler, K. M. Merz and P. Roldman, J. Comput. Chem., 1990, 11, 431 CrossRef CAS.
  19. B. Noszál, in Biocoordination Chemistry, ed. K. Burger, Ellis Horwood, New York, 1990, p. 18 Search PubMed.
  20. B. Noszál and R. Kassai-Táncsos, Talanta, 1991, 38, 1439 CrossRef CAS.
  21. P. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, London, 1965 Search PubMed.
  22. B. H. Lee, G. F. Gerfen and M. J. Miller, J. Org. Chem., 1984, 49, 248.
  23. U. Burkert and N. L. Allinger, ACS Monograph 177, Washington DC, 1982.
  24. INSIGHT/DISCOVER: Insight II, version 95.0, Biosym Inc., San Diego, CA, 1995.
  25. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.