Reverse micelles as a model system with which to study leaving group effects on alkaline phosphatase-catalysed hydrolysis

(Note: The full text of this document is currently only available in the PDF Version )

Hui-Chih Hung, Ter-Mei Huang and Gu-Gang Chang


Abstract

Ionisation of 4-nitrophenol in a reverse micellar system prepared by dissolving Aerosol OT (AOT), a surfactant with an anionic polar head, in isooctane, depends on the degree of hydration ([H2O]/[AOT]) of the system. The model system provides a convenient instrumental tool with which to study the leaving group effect of alkaline phosphatase-catalysed hydrolysis of 4-nitrophenyl phosphate. The Brønsted constants, βlg, for kcat and kcat/Km were found to be –0.47 and –1.03, respectively. Assuming that phosphorylation of the enzyme is rate limiting, the strong leaving group effect on catalysis indicates that the apparent pKa-values observed in reverse micelles are true measures of ionisation.


References

  1. R. B. McComb, G. N. Bowers, Jr. and S. Posen, Alkaline Phosphatase, Plenum Press, New York, 1979 Search PubMed.
  2. J. E. Coleman, Annu. Rev. Biophys. Biomol. Struct., 1992, 21, 441 CrossRef CAS; A. C. Hengge, W. A. Edens and H. Elsing, J. Am. Chem. Soc., 1994, 116, 5045 CrossRef CAS; A. D. Hall and A. Williams, Biochemistry, 1986, 25, 4784 CrossRef CAS; R. Han and J. E. Coleman, Biochemistry, 1995, 34, 4238 CrossRef CAS.
  3. P. M. Weiss and W. W. Cleland, J. Am. Chem. Soc., 1989, 111, 1928 CrossRef CAS; W. W. Cleland, FASEB J., 1990, 4, 2899 Search PubMed; J. A. Gerlt, in The Enzymes, ed. D. S. Stigman, 3rd edn., 1992, vol. 20, p. 95 Search PubMed; F. Hollfelder and D. Herschlag, Biochemistry, 1995, 34, 12 255 Search PubMed.
  4. Z.-Y. Zhang, L. Wu and L. Chen, Biochemistry, 1995, 34, 16 088 CrossRef CAS; D. Herschlag and W. P. Jencks, J. Am. Chem. Soc., 1989, 111, 7579 CrossRef CAS; D. Herschlag and W. P. Jencks, J. Am. Chem. Soc., 1989, 111, 7587 CrossRef CAS; D. Herschlag and W. P. Jencks, Biochemistry, 1990, 29, 5172 CrossRef CAS; B. I. Labow, D. Herschlag and W. P. Jencks, Biochemistry, 1993, 32, 8737 CrossRef CAS.
  5. P. L. Luisi, Angew. Chem., Int. Ed. Engl., 1985, 24, 439 CrossRef; M. Waks, Proteins: Struct. Funct. Genet., 1986, 1, 4 Search PubMed; P. L. Luisi and L. J. Magid, CRC Crit. Rev. Biochem., 1986, 20, 409 Search PubMed; K. Martinek, N. L. Klyachko, A. V. Kabanov, Y. L. Khmelnitsky and A. V. Levashov, Biochim. Biophys. Acta, 1989, 981, 161 CAS.
  6. G. G. Chang and S. L. Shiao, Eur. J. Biochem., 1994, 220, 861 CAS.
  7. S. S. Tang and G. G. Chang, Biochem. J., 1996, 315, 599 CAS.
  8. T. C. Chang, S. M. Huang, T. M. Huang and G. G. Chang, Eur. J. Biochem., 1992, 209, 241 CAS.
  9. T. Sakiyama, J. C. Robinson and J. Y. Chou, J. Biol. Chem., 1979, 254, 935 CAS.
  10. P. L. Luisi and B. Steinmann-Hofmann, Meth. Enzymol., 1987, 136, 188 Search PubMed.
  11. A. V. Kabanov, N. L. Klyachko, S. N. Nametkin, S. Merker, A. V. Zaroza, V. I. Bunik, M. V. Ivanov and A. V. Levashov, Protein Eng., 1991, 4, 1009 CAS.
  12. R. M. C. Dawson, D. C. Elliott, W. H. Elliott and K. M. Jones, Data for Biochemical Research, Clarendon Press, Oxford, 3rd edn., 1986, pp. 370–371 Search PubMed.
  13. Z.-Y. Zhang and R. L. Van Etten, Biochemistry, 1991, 30, 8954 CrossRef CAS.
  14. S. S. Tang and G. G. Chang, J. Org. Chem., 1995, 60, 6183 CrossRef CAS.
  15. F. M. Menger and G. Saito, J. Am. Chem. Soc., 1978, 100, 4376 CrossRef CAS.
  16. R. H. Abeles, P. A. Frey and W. P. Jencks, Biochemistry, Jones and Bartlett, Boston, 1992, pp. 82–84 Search PubMed.
  17. T. T. Simopoulos and W. P. Jencks, Biochemistry, 1994, 33, 10 375 CrossRef CAS.
  18. J. Berger, R. Micanovic, R. J. Greenspan and S. Udenfriend, Proc. Natl. Acad. Sci. USA, 1989, 86, 1457 CAS; D. A. Brown and J. K. Rose, Cell, 1992, 68, 533 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.