Stannanes as free-radical reducing agents: an ab initio study of hydrogen atom transfer from some trialkyltin hydrides to alkyl radicals

(Note: The full text of this document is currently only available in the PDF Version )

Dainis Dakternieks, David J. Henry and Carl H. Schiesser


Abstract

Ab initio molecular orbital calculations using a (valence) double-ξ pseudopotential (DZP) basis set, with (MP2, QCISD) and without (SCF) the inclusion of electron correlation, predict that hydrogen atoms, methyl, ethyl, isopropyl and tert-butyl radicals abstract hydrogen atoms from stannane and trimethyltin hydride via transition states in which the attacking and leaving radicals adopt a colinear arrangement. Transition states in which (overall) Sn–C separations of 3.50 Å have been calculated; these distances appear to be independent of the nature of the attacking radical and alkyl substitution at tin. At the highest level of theory (QCISD/DZP//MP2/DZP), energy barriers (ωE1) of 18–34 kJ mol-1 are predicted for the forward reactions, while the reverse reactions (ωE2) are calculated to require 140–170 kJ mol-1. These values are marginally affected by the inclusion of zero-point vibrational energy correction. Importantly, QCISD and MP2 calculations predict correctly the relative order of radical reactivity toward reduction by stannanes: tert-butyl > isopropyl > ethyl. By comparison, SCF/DZP, AM1 and AM1(CI = 2) calculations perform somewhat more poorly in their prediction of relative radical reactivity.


References

  1. B. Giese, Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon Press, Oxford, 1986 Search PubMed.
  2. W. P. Neumann, Synthesis, 1987, 665 CrossRef CAS; D. P. Curran, Synthesis, 1988, 417, 489; C. P. Jasperse, D. P. Curran and T. L. Fevig, Chem. Rev., 1991, 91, 1237 CrossRef CAS.
  3. For some examples of other synthetically useful stannanes, see: U. Gerigk, M. Gerlach, W. P. Neumann, R. Vieler and V. Weintritt, Synthesis, 1990, 448 Search PubMed; J. Light and R. Breslow, Tetrahedron Lett., 1990, 31, 2957 CrossRef CAS; F. Ferkous, D. Messadi, B. De Jeso, M. Degueil-Castaing and B. Maillard, J. Organomet. Chem., 1991, 420, 315 CrossRef CAS; W. P. Neumann and M. Peterseim, React. Polym., 1993, 20, 189 CrossRef CAS; D. P. Curran and S. Hadida, J. Am. Chem. Soc., 1996, 118, 2531 Search PubMed; D. P. Curran and D. Nanni, Tetrahedron: Asymmetry, 1996, 7, 2417 CrossRef CAS.
  4. C. H. Schiesser and L. M. Wild, Tetrahedron, 1996, 52, 13 265 CrossRef CAS and references cited therein.
  5. D. J. Carlsson and K. U. Ingold, J. Am. Chem. Soc., 1968, 90, 1055 CrossRef CAS; D. J. Carlsson and K. U. Ingold, J. Am. Chem. Soc., 1968, 90, 7047 CrossRef CAS; M. Newcomb, Tetrahedron, 1993, 49, 1151 CrossRef CAS; D. V. Avila, K. U. Ingold, J. Lusztyk, W. R. Dolbier, Jr., H.-Q. Pan and M. Muir, J. Am. Chem. Soc., 1994, 116, 99 CrossRef CAS; S. J. Garden, D. V. Avila, A. L. J. Beckwith, V. W. Bowry, K. U. Ingold and J. Lusztyk, J. Org. Chem., 1996, 61, 805 CrossRef CAS.
  6. L. J. Johnston, J. Lusztyk, D. D. M. Wayner, A. N. Abeywickrema, A. L. J. Beckwith, J. C. Scaiano and K. U. Ingold, J. Am. Chem. Soc., 1985, 107, 4594 CrossRef CAS.
  7. C. Chatgilialoglu, K. U. Ingold and J. C. Scaiano, J. Am. Chem. Soc., 1981, 103, 7739 CrossRef CAS.
  8. O. M. Musa, J. H. Horner, H. Shahin and M. Newcomb, J. Am. Chem. Soc., 1996, 118, 3862 CrossRef CAS.
  9. J. Lusztyk, B. Maillard and K. U. Ingold, J. Org. Chem., 1986, 51, 2457 CrossRef CAS; M. Newcomb and S. U. Park, J. Am. Chem. Soc., 1986, 108, 4132 CrossRef; C. Chatgilialoglu, Acc. Chem. Res., 1992, 25, 188 CrossRef CAS; C. Chatgilialoglu, A. Guerrini and M. Lucarini, J. Org. Chem., 1992, 57, 3405 CrossRef CAS; C. Chatgilialoglu, C. Ferreri and M. Lucarini, J. Org. Chem., 1993, 58, 249 CrossRef CAS.
  10. C. Chatgilialoglu, D. Griller and M. Lasage, J. Org. Chem., 1988, 53, 3641 CrossRef CAS; M. Ballestri, C. Chatgilialoglu, K. B. Clark, D. Griller, B. Giese and B. Kopping, J. Org. Chem., 1991, 56, 678 CrossRef CAS.
  11. J. Lusztyk, B. Maillard, D. A. Lindsay and K. U. Ingold, J. Am. Chem. Soc., 1983, 105, 3578 CrossRef CAS; J. Lusztyk, B. Maillard, S. Deycard, D. A. Lindsay and K. U. Ingold, J. Org. Chem., 1987, 52, 3509 CrossRef.
  12. C. H. Schiesser, B. A. Smart and T.-A. Tran, Tetrahedron, 1995, 51, 3327 CrossRef; C. H. Schiesser and B. A. Smart, Tetrahedron, 1995, 51, 6051 CrossRef see correction in: C. H. Schiesser, B. A. Smart and T.-A. Tran, Tetrahedron, 1995, 51, 10 651 Search PubMed For performance of DZP basis set see: B. A. Smart and C. H. Schiesser, J. Comput. Chem., 1995, 16, 1055 CrossRef.
  13. C. H. Schiesser and M. A. Skidmore, Chem. Commun., 1996, 1419 RSC.
  14. A. L. J. Beckwith and A. A. Zavitsas, J. Am. Chem. Soc., 1995, 117, 607 CrossRef CAS.
  15. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzales, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92, Revision F, Gaussian Inc., Pittsburgh, PA, 1992.
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Revision B.3, Gaussian Inc., Pittsburgh, PA, 1995.
  17. W. J. Hehre, L. Radom, P. v. R. Schleyer and P. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  18. AMPAC 5.0, © 1994 Semichem, 7128 Summitt, Shawnee, KS 66216.
  19. C. H. Schiesser, M. L. Styles and L. M. Wild, J. Chem. Soc., Perkin Trans. 2, 1996, 2257 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.