Fluorinated biphenyls from aromatic arylations with pentafluorobenzenediazonium and related cations. Competition between arylation and azo coupling

(Note: The full text of this document is currently only available in the PDF Version )

Dmitry Kosynkin, T. Michael Bockman and Jay K. Kochi


Abstract

High yields of the mixed perfluorinated biaryls (C6F5–Ar) are obtained by the catalytic dediazoniation of the pentafluorobenzenediazonium salt (C6F5N2+BF4) in acetonitrile solutions containing various aromatic substrates (ArH) together with small amounts of iodide salts. Activated (electron-rich) as well as deactivated (electron-poor) arenes are successfully pentafluorophenylated by this method. The arylation is distinct from the azo coupling of the same substrates, which takes place in the absence of the iodide catalyst and yields the corresponding diazene (C6F5N[double bond, length half m-dash]N–Ar) as product. The catalytic role of iodide, and the isomeric product distributions obtained with this procedure indicate that the arylation proceeds via the pentafluorophenyl radical in a efficient homolytic chain process. Since azo coupling involves electrophilic aromatic substitution of electron-rich ArH by C6F5N2+, the two competing pathways are distinct and do not have reactive intermediates in common.


References

  1. J. Zyss, I. Ledoux and J.-F. Nicoud, in Molecular Nonlinear Optics: Materials, Physics, and Devices, ed. J. Zyss, Academic, New York, 1994, p. 129f Search PubMed.
  2. G. Puccetti, I. Ledoux, J. Zyss, A. Jutland and C. Amatore, Chem. Phys., 1992, 160, 467 CrossRef CAS.
  3. (a) S. A. King, A. S. Thompson, A. O. King and T. R. Verhoeven, J. Org. Chem., 1992, 57, 6691 CrossRef; (b) R. Noyori and H. Takaga, Acc. Chem. Res., 1990, 23, 345 CrossRef CAS.
  4. M. Gomberg and W. E. Bachmann, J. Am. Chem. Soc., 1924, 46, 2339 CrossRef CAS.
  5. (a) R. Bolton and G. H. Williams, Chem. Soc. Rev., 1986, 15, 261 RSC; (b) D. H. Hey, Adv. Free Radical Chem., 1966, 21, 47 Search PubMed.
  6. R. Pschorr, Chem. Ber., 1896, 29, 496 Search PubMed.
  7. R. A. Abramovitch, Adv. Free Radical Chem., 1966, 2, 4787 Search PubMed.
  8. J. R. Beadle, S. H. Korzeniowski, D. E. Rosenberg, B. J. Garcia-Slanga and G. W. Gokel, J. Org. Chem., 1984, 49, 1594 CrossRef CAS.
  9. E. Dreher, P. Niederer, W. Schwarz and H. Zollinger, Helv. Chim. Acta, 1981, 64, 488 CrossRef CAS.
  10. S. R. Marder, J. E. Sohn and G. D. Stucky, Materials for Nonlinear Optics: Chemical Perspectives, Am. Chem. Soc., Washington, DC, 1991 Search PubMed.
  11. (a) B. Rieger, R. Hittich, E. Poetsch, D. Coates and H. Plach, Ger. Patent 4,112,001 (Chem. Abstr.117, 181935) Search PubMed; (b) D. J. Byron, R. C. Wilson, A. S. Matharu, A. R. Tatbakhsh and D. Coates, UK Patent 2,249,409 (Chem. Abstr.117, 170945) Search PubMed; (c) V. Reiffenrath, R. Hittich and H. Plach, Ger. Patent 4,111,765 (Chem. Abstr.117, 101634) Search PubMed; (d) M. Oosawa, S. Takehara and H. Takatsu, Jpn. Patent 7,179,374 (Chem. Abstr.123, 325869) Search PubMed; (e) M. Okada, K. Shiuchi, F. Funada, H. Numada, H. Ichinose, K. Sasake, H. Plach and E. Poetsch, Ger. Patent 4,426,904; 4,426,905 (Chem. Abstr.122, 278761, 278762) Search PubMed; (f) M. Oosawa, S. Takehara and H. Takatsu, Jpn. Patent 6,316,540 (Chem. Abstr.122, 202008) Search PubMed.
  12. R. Bolton and G. H. Williams, Adv. Free Radical Chem., 1975, 5, 1 Search PubMed.
  13. (a) J. Burdon, J. G. Campbell and J. C. Tatlow, J. Chem. Soc. (C), 1969, 822 RSC; (b) P. H. Oldham and G. H. Williams, J. Chem Soc. (C), 1970, 1260 RSC; (c) R. Bolton, M. W. Coleman and G. H. Williams, J. Fluorine Chem., 1974, 4, 363 CrossRef CAS.
  14. H. J. Frohn, A. Klose and V. V. Bardin, J. Fluorine Chem., 1993, 64, 201 CrossRef CAS.
  15. J. M. Birchall, R. N. Haszeldine and M. Wilkinson, J. Chem. Soc., Perkin Trans. 1, 1974, 1740 RSC.
  16. J. M. Birchall, R. Hazard, R. N. Haszeldine and W. W. Wakalski, J. Chem. Soc. (C), 1967, 47 RSC.
  17. G. M. Brook, E. J. Forbes, R. D. Richardson, M. Stacey and J. C. Tatlow, J. Chem. Soc., 1965, 2088 RSC.
  18. G. G. Yakobson, A. I. D'yachenki and F. A. Bel'chikova, Zh. Obsch. Khim., 1962, 32, 849 CAS.
  19. D. Kosynkin, T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc., 1997, 119, 4846 CrossRef CAS.
  20. For product identification, see Experimental section.
  21. (a) H. Zollinger and J. R. Penton, Helv. Chim. Acta, 1981, 64, 1717, 1728; (b) I. Szele and H. Zollinger, Top. Curr. Chem., 1983, 112, 1 CAS.
  22. H. Zollinger, Diazo Chemistry Vol. 1, VCH, New York, 1994 Search PubMed.
  23. D. E. Wulfman, in The Chemistry of Diazonium and Diazo Groups, ed. S. Patai, Wiley, New York, 1978, p. 290 Search PubMed.
  24. (a) A. N. Abeywickrema and A. L. J. Beckwith, J. Org. Chem., 1987, 52, 2768; (b) J. G. Carey, G. Jones and I. T. Millar, Chem. Ind., 1959, 1018 Search PubMed; (c) J. G. Carey and I. T. Millar, Chem. Ind., 1960, 97 Search PubMed.
  25. C. J. Collins, Acc. Chem. Res., 1971, 4, 315 CrossRef CAS.
  26. G. K. Meredith, in Nonlinear Optics: Materials and Devices, ed. C. Flytzanis and J. L. Oudar, Springer-Verlag, New York, 1985, p. 116 Search PubMed.
  27. R. J. Bartlett and H. Sekino, in Nonlinear Optical Materials: Theory and Modeling, eds. S. P. Karma and A. T. Yeates, Am. Chem. Soc., Washington, DC, 1966, p. 23f Search PubMed.
  28. S. H. Kang, Y. M. Jeon, K. Kim, S. Houbrechts, E. Hendrickx and A. Persoons, J. Chem. Soc., Chem. Commun., 1995, 635 RSC.
  29. Compare (a) J. F. Bunnett, Acc. Chem. Res., 1978, 11, 413 CrossRef CAS; (b) R. A. Rossi and R. H. de Rossi, Aromatic Substitution by the SRN1 Mechanism, Am. Chem. Soc., Washington DC, 1983 Search PubMed.
  30. N. Kornblum, G. D. Cooper and J. E. Taylor, J. Am. Chem. Soc., 1950, 72, 3013 CrossRef.
  31. D. F. DeTar and M. N. Turetzky, J. Am. Chem. Soc., 1956, 78, 3925 CrossRef CAS.
  32. G. H. Williams, Homolytic Aromatic Substitution Vol. 4, Pergamon, New York, 1960 Search PubMed.
  33. For some related electron-transfer chain or ETC processes, see M. Chanon and M. L. Tobe, Angew. Chem., Int. Ed. Engl., 1982, 21, 1 Search PubMed.
  34. A. L. J. Beckwith and G. F. Meijs, J. Org. Chem., 1987, 52, 1922 CrossRef CAS.
  35. (a) C. Galli, J. Chem. Soc., Perkin Trans. 2, 1981, 1459 RSC; (b) C. Galli, Chem. Rev., 1988, 88, 765 CrossRef CAS.
  36. P. H. Oldham, G. H. Williams and B. A. Wilson, J. Chem. Soc. (C), 1971, 1094 RSC.
  37. See (a) K. C. Brown and M. P. Doyle, J. Org. Chem., 1988, 53, 3255 CrossRef CAS; (b) M. L. Anderson, K. L. Handoo and V. D. Parker, Acta Chem. Scand., 1991, 45, 983; (c) B. C. Gilbert, P. Hanson, J. R. Jones, J. C. Whitwood and A. W. Timms, J. Chem. Soc., Perkin Trans. 2, 1992, 629 RSC.
  38. T. Suehiro, Rev. Chem. Intermed., 1988, 10, 101 Search PubMed.
  39. R. Taylor, Electrophilic Aromatic Substitution, Wiley, New York, 1990, pp. 278f Search PubMed.
  40. E. B. Peterson, T. E. Peterson, K. Torsell and S. O. Lawesson, Tetrahedron, 1973, 29, 579 CrossRef.
  41. (a) S. Fukuzumi and J. K. Kochi, J. Am. Chem. Soc., 1981, 103, 7240 CrossRef CAS; (b) For a recent discussion of the role of charge (electron) transfer in the transition state for electrophilic aromatic substitution, see T. M. Bockman and J. K. Kochi, J. Phys. Org. Chem., 1994, 7, 325 Search PubMed.
  42. E. Bosch and J. K. Kochi, J. Org. Chem., 1994, 59, 5573 CrossRef CAS.
  43. See e.g.D. C. Nonhebel and J. C. Walton, Free Radicals, Cambridge University Press, London, 1974 Search PubMed.
  44. (a) J. O. Howell, J. M. Goncalves, C. Amatore, L. Klasinc, R. M. Wightman and J. K. Kochi, J. Am. Chem. Soc., 1984, 106, 3968 CrossRef CAS; (b) K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki and S. Iwata, Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules, Halsted Press, New York, 1981 Search PubMed; (c) S. Kobayashi and S. Nagakura, Bull. Chem. Soc. Jpn., 1994, 47, 2563; (d) See also J. B. Birks, Photophysics of Aromatic Molecules, Wiley, New York, 1970, p. 457 Search PubMed.
  45. (a) W. C. Herndon, J. Phys. Chem., 1981, 85, 3041; (b) J. A. Stone, X. Li and P. A. Turner, Can. J. Chem., 1986, 64, 2021 CAS; (c) P. Kebarle, Ann. Rev. Phys. Chem., 1977, 28, 445 Search PubMed; (d) This type of (gas-phase) comparison does not directly take into account important solvation effects.
  46. For example, we estimate that the proton affinity of m-dimethoxy-benzene is ca. 0.6 eV greater than that of p-dimethoxybenzene based on the linear correlation of P. A. with the σ+ constant, as described by R. Karaman, J. T. L. Huang and J. L. Fry, J. Org. Chem., 1991, 56, 188 Search PubMed.
  47. J. M. Birchall, R. N. Haszeldine and A. R. Parkinson, J. Chem. Soc., 1962, 4966 RSC.
  48. Q. Y. Chen and Z. T. Li, J. Org. Chem., 1993, 58, 2599 CrossRef CAS.
  49. D. Kosynkin, PhD Dissertation, University of Houston, to be submitted.
  50. H. Ljusberg and R. Wahren, Acta Chem. Scand., 1973, 27, 2717 CAS.
  51. J. M. Birchall, R. N. Haszeldine and H. Woodfine, J. Chem. Soc., Perkin Trans. 1, 1973, 1121 RSC.
  52. H. Iwamoto, T. Sonoda and H. Kobayashi, J. Fluorine Chem., 1984, 24, 535 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.