Deuterium isotope effect on 1H and 13C chemical shifts of intramolecularly hydrogen bonded perylenequinones

(Note: The full text of this document is currently only available in the PDF Version )

Stefania Mazzini, Lucio Merlini, Rosanna Mondelli, Gianluca Nasini, Enzio Ragg and Leonardo Scaglioni


Abstract

The primary and secondary deuterium isotope effects on proton and carbon chemical shifts were measured for a number of natural pigments and their derivatives, which contain the perylenequinone system and present a phenol–quinone tautomerism, cercosporin 1, isocercosporin 2, phleichrome 3, isophleichrome 4, cladochrome E 5, elsinochromes 6–8, hypocrellin 9, noranhydrocercosporin 10 and noranhydrophleichrome 11. Deuterium isotope effects on protons were also measured for 1,4-dihydroxyanthraquinone 12, methyl 4-(1,4-dihydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl)butanoate 13, N-acetyldaunomycin 15, daunomycinone 16, naphthazarin 17 and a number of intramolecularly hydrogen-bonded enols from β-diketones, β-ketoesters and o-hydroxyacyl aromatic compounds 19–24. The primary isotope effects Δδ(1H,2H) on OH proton shift and 1H chemical shifts of OH groups are correlated and can be used to estimate the strength of the hydrogen bonds in solution. The secondary isotope effects on proton and carbon nuclei are transmitted along the whole extended conjugated perylenequinone system. Long-range effects over eleven bonds and over seven bonds were observed in compounds 1–11 and in 12–18.

The perturbation of the equilibrium due to the presence of deuterium was considered and calculations were performed in order to evaluate the amount of this contribution to the isotope effect. The variation with temperature of primary and secondary effects, from 25 °C down to –70 °C, was studied for compounds 1, 3, 6, 12 and 17, and for acetylacetone 22 and benzoylacetone 23. Parameters from a number of X-ray analyses, for example the O · · · O distances (as suggested by Gilli et al., J. Am. Chem. Soc., 1991, 113, 4917), gave evidence of a substantial parallelism between the liquid and the solid phase. The strength of the hydrogen bond in perylenequinones depends on the planarity of the two naphthalene units rather than on the distortion of the polycyclic ring.


References

  1. (a) P. E. Hansen, S. N. Ibsen, T. Kristensen and S. Bolvig, Magn. Reson. Chem., 1994, 32, 399 CAS; (b) P. E. Hansen, Magn. Reson. Chem., 1993, 31, 23 CAS; (c) P. E. Hansen, Magn. Reson. Chem., 1986, 24, 903 CAS.
  2. (a) W. C. Alston II, K. Haley, R. Kanski, C. J. Murray and J. Pranata, J. Am. Chem. Soc., 1996, 118, 6562 CrossRef; (b) B. N. Craig, M. U. Janssen, B. M. Wickersham, D. M. Rabb, P. S. Chang and D. J. O'Leary, J. Org. Chem., 1996, 61, 9610 CrossRef; (c) D. A. Forsyth and S. M. Johnson, J. Am. Chem. Soc., 1994, 116, 11481 CrossRef CAS.
  3. S. N. Smirnov, N. S. Golubev, G. S. Denisov, H. Benedict, P. Schah-Mohammedi and H.-H. Limbach, J. Am. Chem. Soc., 1996, 118, 4094 CrossRef CAS.
  4. W. P. Huskey, J. Am. Chem. Soc., 1996, 118, 1663 CrossRef CAS.
  5. C. J. Jameson, Isotopic Applications in NMR Studies, in Isotopes in the Physical and Biomedical Sciences, Elsevier, Amsterdam, 1991 Search PubMed.
  6. S. Berger, R. L. Van Etten, J. M. Risley and N. M. Sergeyev, Isotope Effects in NMR Spectroscopy, in NMR Basic Principle and Progress, Springer-Verlag, Berlin, 1990, vol. 22 Search PubMed.
  7. C. Engdahl, A. Gogoll and U. Edlund, Magn. Reson. Chem., 1991, 29, 54 CAS.
  8. J. Reuben, J. Am. Chem. Soc., 1986, 108, 1735 CrossRef CAS.
  9. (a) G. Gunnarsson, H. Wennerström, W. Egan and S. Forsén, Chem. Phys. Lett., 1976, 38, 96 CrossRef CAS; (b) L. J. Altman, D. Laungani, G. Gunnarsson, H. Wennerström and S. Forsén, J. Am. Chem. Soc., 1978, 100, 8264 CrossRef CAS.
  10. A. L. Porte, H. S. Gutowsky and T. Moyer Hunsberger, J. Am. Chem. Soc., 1960, 82, 5057 CrossRef CAS.
  11. (a) P. Gilli, V. Bertolasi, V. Ferretti and G. Gilli, J. Am. Chem. Soc., 1994, 116, 909 CrossRef CAS; (b) V. Bertolasi, P. Gilli, V. Ferretti and G. Gilli, J. Am. Chem. Soc., 1991, 113, 4917 CrossRef CAS; (c) G. Gilli, F. Bellucci, V. Ferretti and V. Bertolasi, J. Am. Chem. Soc., 1989, 111, 1023 CrossRef CAS and references quoted.
  12. (a) U. Weiss, L. Merlini and G. Nasini, Prog. Chem. Org. Nat. Prod., 1987, 52, 1 Search PubMed; (b) G. Nasini, L. Merlini, G. D. Andreetti, G. Bocelli and P. Sgarabotto, Tetrahedron, 1982, 38, 2787 CrossRef; (c) A. Arnone, G. Assante, L. Merlini and G. Nasini, Gazz. Chim. Ital., 1989, 119, 557 CAS; (d) A. Arnone, L. Merlini, R. Mondelli, G. Nasini, E. Ragg and L. Scaglioni, Gazz. Chim. Ital., 1993, 123, 131 CAS.
  13. A. Arnone, L. Merlini, R. Mondelli, G. Nasini, E. Ragg, L. Scaglioni and U. Weiss, J. Chem. Soc., Perkin Trans. 2, 1993, 1447 RSC.
  14. D. Mentzafos, A. Terzis and S. E. Filippakis, Cryst. Struct. Commun., 1982, 11, 71 Search PubMed.
  15. S. V. Meille, L. Malpezzi, G. Allegra, G. Nasini and U. Weiss, Acta Crystallogr, Sect. C, Cryst. Struct. Commun., 1989, 45, 628 CrossRef.
  16. (a) L. N. Liang, N. I. Zhu and M. H. Zhang, Kexue Tongbao, 1987, 32, 56 Search PubMed; (b) W. S. Chen, Y.-T. Chen, X.-Y. Wang, E. Friedrichs, H. Puff and E. Breitmaier, Liebigs Ann. Chem., 1981, 1880 Search PubMed.
  17. (a) S. Neidle and G. Taylor, Biochim. Biophys. Acta, 1977, 479, 450 CrossRef CAS; (b) C. Courseille, B. Busetta, S. Geoffre and M. Hospital, Acta Crystallogr., Sect. B, 1979, 53, 764 CrossRef.
  18. L. Merlini, Atti III Conv. Naz. Giornate di Chimica delle Sostanze Naturali, Amalfi, 1994, p. L5 Search PubMed.
  19. H.-U. Siehl, Isotope Effects on NMR Spectra of Equilibrating Systems, in Advances in Physical Organic Chemistry, Academic Press, London, 1987, vol. 23 Search PubMed.
  20. J. Reuben, J. Am. Chem. Soc., 1984, 106, 6180 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.