Chemical triggering of dioxetanes derived from 9-adamantylideneacridanes: fluoride- and base-induced chemiluminescence (CIEEL) of siloxy- and acetoxy-substituted dioxetanes

(Note: The full text of this document is currently only available in the PDF Version )

Waldemar Adam and Dirk Reinhardt


Abstract

Photooxygenation of the methoxy-, siloxy- and acetoxy-substituted adamantylideneacridanes 3 afforded the corresponding dioxetanes 4. Thanks to the spiroadamantyl-substitution, these dioxetanes were sufficiently persistent to allow their isolation and full characterization. The activation parameters (Ea, log A, ωH, ωS) of the direct chemiluminescence for the methoxy-substituted derivatives 4a–c were determined by standard isothermal kinetic methods. The fluoride-ion- and base-induced decomposition of the siloxy- and acetoxy-substituted dioxetanes 4g,h,j,k was shown to involve intramolecular CIEEL emission. The CIEEL quantum yields (ΦCIEEL) were independent of the nature of the protective group, but marked differences were observed between the 2- and the 3-substituted derivatives; the latter are about two orders of magnitude more efficient. The difference in the CIEEL quantum yields was attributed to the distinct fluorescence properties of the corresponding emitters 7 since fluorescence from the 2-substituted derivative 7(2) is too small to be measurable, while for the 3-substituted derivative 7(3) the fluorescence quantum yields (ΦFl) are as much as a few percent. AM1 calculations were conducted on the oxy-substituted acridone emitters 7 to explore the reasons. Presumably, the dominant charge-transfer excitation of the acridone chromophore is not appreciably perturbed by the oxy substituent for both regioisomeric emitters 7(2,3). Thus, the similar singlet excitation yields (ΦS) for the regioisomeric oxy-substituted spiroacridane dioxetanes 6 generated on triggering reveal that they do not follow the odd/even rationale established for the related oxy-substituted benzoates and naphthoates.


References

  1. J.-Y. Koo and G. B. Schuster, J. Am. Chem. Soc., 1977, 99, 6107 CrossRef CAS; G. B. Schuster, Acc. Chem. Res., 1979, 12, 366 CrossRef CAS.
  2. W. Adam and O. Cueto, J. Am. Chem. Soc., 1979, 101, 6511 CrossRef CAS; S. P. Schmidt and G. B. Schuster, J. Am. Chem. Soc., 1980, 102, 306 CrossRef CAS.
  3. K. A. Zaklika, A. L. Thayer and A. P. Schaap, J. Am. Chem. Soc., 1978, 100, 4916 CrossRef CAS; K. A. Zaklika, T. Kissel, A. L. Thayer, P. A. Burns and A. P. Schaap, Photochem. Photobiol., 1979, 30, 35 CAS; A. P. Schaap and S. D. Gagnon, J. Am. Chem. Soc., 1982, 104, 3504 CrossRef CAS.
  4. J.-Y. Koo, S. P. Schmidt and G. B. Schuster, Proc. Natl. Acad. Sci. USA, 1978, 75, 30 CAS.
  5. A. P. Schaap, R. S. Handley and B. P. Giri, Tetrahedron Lett., 1987, 28, 935 CrossRef; A. P. Schaap, T.-S. Chen, R. S. Handley, R. DeSilva and B. P. Giri, Tetrahedron Lett., 1987, 28, 1155 CrossRef CAS; A. P. Schaap, M. D. Sandison and R. S. Handley, Tetrahedron Lett., 1987, 28, 1159 CrossRef CAS.
  6. I. Bronstein, B. Edwards and J. C. Voyta, J. Biolumin. Chemilumin., 1989, 4, 99 CAS; I. Bronstein, J. C. Voyta, G. H. G. Thorpe, L. J. Kricka and G. Armstrong, Clin. Chem., 1989, 35, 1441 CAS; G. H. G. Thorpe, I. Bronstein, L. J. Kricka, B. Edwards and J. C. Voyta, Clin. Chem., 1989, 35, 2319 CAS; I. Bronstein, J. C. Voyta and B. Edwards, Anal. Biochem., 1989, 180, 95 CrossRef CAS; R. Tizard, R. L. Cate, K. L. Ramachandran, M. Wysk, J. C. Voyta, O. J. Murphy and I. Bronstein, Proc. Natl. Acad. Sci. USA, 1990, 87, 4514 CAS.
  7. W. Adam and M. H. Schulz, Chem. Ber., 1992, 125, 2455 CAS; W. Adam, R. Fell and M. H. Schulz, Tetrahedron, 1993, 49, 2227 CrossRef CAS; W. Adam and D. Reinhardt, J. Chem. Soc., Perkin Trans. 2, 1994, 1503 RSC.
  8. M. Matsumoto, H. Suganuma, Y. Katao and H. Mutoh, J. Chem. Soc., Chem. Commun., 1995, 431 RSC; M. Matsumoto, H. Suganuma, M. Azami, N. Aoshima and H. Mutoh, Heterocycles, 1995, 41, 2419 CAS; M. Matsumoto, N. Watanabe, H. Kobayashi, H. Suganuma, J. Matsubara, Y. Kitano and H. Ikawa, Tetrahedron Lett., 1996, 37, 5939 CrossRef CAS; M. Matsumoto, N. Watanabe, H. Kobayashi, M. Azami and H. Ikawa, Tetrahedron Lett., 1997, 38, 411 CrossRef CAS.
  9. (a) S. Beck and H. Köster, Anal. Chem., 1990, 62, 2258 CrossRef CAS; (b) A. Mayer and S. Neuenhofer, Angew. Chem., 1994, 106, 1097 CAS; Angew. Chem., Int. Ed. Engl., 1994, 33, 1044 Search PubMed; (c) Bioluminescence & Chemiluminescence, Current Status, ed. P. E. Stanley and L. J. Kricka, Wiley, Chichester, 1991 Search PubMed.
  10. F. McCapra, I. Beheshti, A. Burford, R. A. Hann and K. A. Zaklika, J. Chem. Soc., Chem. Commun., 1977, 944 RSC; F. McCapra and D. Watmore, Tetrahedron Lett., 1982, 23, 5225 CrossRef CAS.
  11. M. Siegmund, J. Bendig and K. Teuchner, Z. Chem., 1985, 25, 372 CAS; M. Siegmund, J. Bendig, M. von Löwis of Menar and J. Wilda, Monatsh. Chem., 1986, 117, 1113 CAS.
  12. W. Adam, in Chemical and Biological Generation of Excited States, ed. W. Adam and G. Cilento, Academic Press, New York, 1982, ch. 4 Search PubMed.
  13. A. Trofimov, K. Mielke, R. F. Vasil'ev and W. Adam, Photochem. Photobiol., 1996, 63, 463 CrossRef CAS.
  14. G. B. Schuster, N. J. Turro, H.-C. Steinmetzer, A. P. Schaap, G. Faler, W. Adam and J. C. Liu, J. Am. Chem. Soc., 1975, 97, 7110 CrossRef CAS; W. Adam and L. A. Arias Encarnación, Chem. Ber., 1982, 115, 2592 CAS; W. Adam, L. A. Arias Encarnación and K. Zinner, Chem. Ber., 1983, 116, 839 CAS.
  15. T. Wilson, M. E. Landis, A. L. Baumstark and P. D. Bartlett, J. Am. Chem. Soc., 1973, 95, 4765 CrossRef CAS.
  16. F. McCapra, J. Chem. Soc., Chem. Commun., 1977, 946 RSC; T. Wilson, Photochem. Photobiol., 1995, 62, 601 CAS.
  17. B. Edwards, A. Sparks, J. C. Voyta and I. Bronstein, J. Biolumin. Chemilumin., 1990, 5, 1 CAS.
  18. F. McCapra, Tetrahedron Lett., 1993, 34, 6941 CrossRef CAS; W. Adam, D. Reinhardt and C. R. Saha-Möller, Analyst, 1996, 121, 1527 RSC.
  19. M. Kupfer and W. Abraham, J. Prakt. Chem., 1983, 325, 95 CrossRef CAS; K.-P. Kronfeld and H.-J. Timpe, J. Prakt. Chem., 1988, 330, 571 CrossRef CAS.
  20. J. W. Hastings and G. Weber, J. Opt. Am. Soc., 1963, 53, 1410 Search PubMed; G. W. Mitchell and J. W. Hastings, Anal. Biochem., 1971, 39, 243 CrossRef CAS.
  21. E. Bergmann, O. Blum-Bergmann and A. Freiherr von Christiani, Liebigs Ann. Chem., 1930, 483, 80 Search PubMed; A. K. Colter, P. Plank, J. P. Bergsma, R. Lahti, A. A. Quesnel and A. G. Parsons, Can. J. Chem., 1984, 62, 1780 CAS.
  22. R. A. Reed, J. Chem. Soc., 1944, 679 Search PubMed.
  23. K. Gleu and S. Nitzsche, J. Prakt. Chem., 1939, 153, 200 CrossRef CAS.
  24. G. K. Hughes, N. K. Matheson, A. T. Norman and E. Ritchie, Austr. J. Sci. Res., 1952, A5, 206 Search PubMed.
  25. I. B. Taraporewala and J. M. Kauffman, J. Pharm. Sci., 1990, 79, 173 CAS.
  26. W. R. Dawson and M. W. Windsor, J. Phys. Chem., 1968, 72, 3251 CrossRef CAS.
  27. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef; G. Rauhut, A. Alex, J. Chandrasekhar, T. Steinke and T. Clark, VAMP 5.0, 1993, University of Erlangen-Nürnberg, Germany.
  28. T. Clark, in Recent Experimental and Computational Advances in Molecular Spectroscopy, ed. R. Fausto, Kluwer Academic Publishers, Norwell, MA, 1993, p. 369 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.