Synthesis of novel dansyl appended cyclodextrins. Self-inclusion and sensor properties

(Note: The full text of this document is currently only available in the PDF Version )

Hubertus F. M. Nelissen, Fokke Venema, René M. Uittenbogaard, Martinus C. Feiters and Roeland J. M. Nolte


Abstract

The synthesis of three dansyl appended cyclodextrin derivatives, differing in the spacer length between cyclodextrin and the dansyl moiety, is described. In compound 4 the fluorophore is directly attached to the cyclodextrin. Compound 5 contains an ethyl spacer and compound 6 a triethylene glycol spacer. These compounds are designed to detect neutral organic guest molecules like cyclohexanol and adamantanecarboxylic acid in water by fluorescence spectroscopy. At neutral pH none of the compounds is sensitive towards guest molecules. For compound 4 this is due to the fact that the dansyl group is located outside the cyclodextrin cavity. For compunds 5 and 6 the low sensitivity is the result of a strong self-inclusion of the dansyl group. Lowering the pH results in protonation of the dimethylamino group of the dansyl moiety, which makes the self-inclusion less favourable leading to a strongly increased response towards guests. This phenomenon allows the sensors to be switched on and off by lowering or increasing the pH of the solution. Compound 6 is able to detect adamantanecarboxylic acid at 5 × 10–7 mol–1 dm3 concentration at pH 1.


References

  1. (a) J. Szejtli, Cyclodextrin technology, Kluwer Academic Publishers, Dordrecht, 1988 Search PubMed; (b) M. L. Bender and M. Komiyama, Cyclodextrin Chemistry, Springer Verlag, New York, 1978 Search PubMed; (c) G. Wenz, Angew. Chem., Int. Ed. Engl., 1994, 33, 803 CrossRef.
  2. R. Corradini, A. Dossena, R. Marchelli, A. Panagia, G. Sartor, M. Saviano, A. Lombardi and V. Pavone, Chem. Eur. J., 1996, 2, 373 CrossRef CAS.
  3. (a) A. Ueno, T. Kuwabara, A. Nakamura and F. Toda, Nature, 1992, 356, 136 CrossRef CAS; (b) T. Kuwabara, A. Nakamura, A. Ueno and F. Toda, J. Phys. Chem., 1994, 98, 6297 CrossRef.
  4. (a) M. Fukushima, T. Osa and A. Ueno, Chem. Lett., 1991, 709 CAS; (b) A. Ueno, M. Fukushima and T. Osa, J. Chem. Soc., Perkin Trans. 2, 1990, 1067 RSC.
  5. (a) K. Hamasaki, A. Ueno, F. Toda, I. Suzuki and T. Osa, Bull. Chem. Soc. Jpn., 1994, 67, 516 CAS; (b) A. Ueno, F. Moriwaki and T. Osa, Tetrahedron Lett., 1987, 43, 1571 CrossRef CAS.
  6. (a) A. Ueno, S. Minato, I. Suzuki, M. Fukushima, M. Ohkubo, T. Osa, F. Hamada and K. Murai, Chem. Lett., 1990, 605 CAS; (b) Y. Wang, T. Ikeda, A. Ueno and F. Toda, Chem. Lett., 1992, 863 CAS; (c) F. Hamada, Y. Kondo, R. Ito, I. Suzuki, T. Osa and A. Ueno, J. Incl. Phenom., 1993, 15, 273 CrossRef CAS; (d) Y. Wang, T. Ikeda, A. Ueno and F. Toda, Bull. Chem. Soc. Jpn., 1994, 67, 1598 CAS; (e) M. Nakamura, T. Ikeda, A. Nakamura, H. Ikeda, A. Ueno and F. Toda, Chem. Lett., 1995, 343 CAS; (f) M. Nakamura, A. Ikeda, N. Ise, T. Ikeda, H. Ikeda, F. Toda and A. Ueno, J. Chem. Soc., Chem. Commun., 1995, 721 RSC; (g) H. Ikeda, M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda, F. Toda and A. Ueno, J. Am. Chem. Soc., 1996, 118, 10 980 CrossRef CAS.
  7. F. Venema, C. M. Baselier, M. C. Feiters and R. J. M. Nolte, Tetrahedron Lett., 1994, 35, 8661 CrossRef CAS.
  8. (a) B. Gillet, D. J. Nicole and J. J. Delpuech, Tetrahedron Lett., 1982, 23, 65 CrossRef CAS; (b) Y. Yamamoto and Y. Inoue, J. Carbohydr. Chem., 1989, 8, 29 CAS.
  9. (a) R. I. Gelb, L. M. Schwartz, J. J. Bradshaw and D. A. Laufer, Bioorg. Chem., 1980, 9, 299 CrossRef CAS; (b) R. I. Gelb, L. M. Schwartz and D. A. Laufer, Bioorg. Chem., 1982, 11, 274 CrossRef CAS.
  10. (a) F. Venema, C. M. Baselier, E. van Dienst, B. H. M. Ruël, M. C. Feiters, J. F. J. Engbersen, D. N. Reinhoudt and R. J. M. Nolte, Tetrahedron Lett., 1994, 35, 1773 CrossRef CAS; (b) E. van Dienst, B. H. M. Snellink, I. Von Piekartz, M. H. B. Grote Gansey, F. Venema, M. C. Feiters, R. J. M. Nolte, J. F. J. Engbersen and D. N. Reinhoudt, J. Org. Chem., 1995, 60, 6537 CrossRef CAS.
  11. M. J. Pregel and E. Buncel, Can. J. Chem., 1991, 69, 130 CAS.
  12. D. Lagunoff and P. Ottolenghi, Compt. Rend. Lab. Carlsberg, 1966, 35, 63 Search PubMed.
  13. S. I. van Dijk, P. G. Wiering, C. P. Groen, A. M. Brouwer, J. W. Verhoeven, W. Schuddeboom and J. M. Warman, J. Chem. Soc., Faraday Trans., 1995, 91, 2107 RSC.
  14. P. V. Demarco and A. L. Thakkar, J. Chem. Soc., Chem. Commun., 1970, 2 RSC.
  15. A. Ueno, I. Suzuki and T. Osa, J. Am. Chem. Soc., 1989, 111, 6391 CrossRef CAS.
  16. M. R. Eftink, M. L. Andy, R. Bystrom, H. D. Perlmutter and D. S. Kristol, J. Am. Chem. Soc., 1989, 111, 6765 CrossRef CAS.
  17. A. Harada, J. Li and M. Kamachi, Macromolecules, 1993, 26, 5698 CrossRef CAS.
  18. U. Narang, R. A. Dunbar, F. V. Bright and P. N. Prasad, Appl. Spectrosc., 1993, 47, 1700 CAS For another example in which pure β-CD, entrapped in a sol–gel glass, is used for the detection of pyrene, see: K. Matsai, Langmuir, 1992, 8, 673 Search PubMed.
  19. W. H. Myers and G. J. Robertson, J. Am. Chem. Soc., 1943, 65, 8 CrossRef CAS.
  20. J. H. Boyer and J. Hamer, J. Am. Chem. Soc., 1955, 77, 952.
  21. B. Carboni, M. Vaultier and R. Carrié, Tetrahedron, 1987, 43(8), 1799 CrossRef CAS.
  22. A. R. van Doorn, W. Verboom, S. Harkema and D. N. Reinhoudt, Synthesis, 1992, 119 CrossRef CAS.
  23. P. Huszthy, J. S. Bradshaw, L. Y. Zhu and R. M. Izatt, J. Org. Chem., 1991, 56, 3330 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.