Electrolysis in the presence of ultrasound: cell geometries for the application of extreme rates of mass transfer in electrosynthesis

(Note: The full text of this document is currently only available in the PDF Version )

Frank Marken,, Richard G. Compton, Richard G. Compton,, Stephen G. Davies, Steven D. Bull, Thies Thiemann, M. Luisa Sá e Melo, André Campos Neves, José Castillo, C. Gisèle Jung, André Fontana , Stephen G. Davies, Steven D. Bull, Thies Thiemann, M. Luisa Sá e Melo, André Campos Neves, José Castillo, C. Gisèle Jung and André Fontana


Abstract

Two types of sonoelectrochemical reactors for preparative synthetic work are suggested and characterized by their performance in the reversible one electron reduction of cobalticenium cations in acetonitrile solution. The dominant effect of ultrasound is to strongly agitate the liquid phase and the corresponding parameters (mass transport coefficients) for the transport at the electrode surface are reported. An upper limit for ultrasound induced mass transport at macroelectrodes an order of magnitude beyond that achieved in conventional electrolysis is described. Further, for a synthetic scale reaction, the reductive ring opening of the α,β-epoxyketone isophorone oxide to yield the corresponding β-hydroxyketone, an improved current efficiency (3 F for a direct two electron reduction) and a clean conversion (yields up to 80% isolated) are demonstrated. The extremely high rates of mass transport achieved in the presence of ultrasound considerably enhance the performance and current efficiency in electrosynthesis by selectively increasing the rates of the mass transport controlled processes.


References

  1. Organic Electrochemistry, eds. H. Lund and M. M. Baizer, Marcel Dekker, New York, 1991 Search PubMed.
  2. See, for example, A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980 Search PubMed.
  3. N. Moriguchi, J. Chem. Soc. Jpn., 1934, 55, 749 CAS.
  4. (a) R. Walker, Chem. Br., 1990, 26, 251 Search PubMed; (b) H. Kuttruff, Ultrasonics: Fundamentals and Applications, Elsevier, New York, 1991 Search PubMed; (c) R. G. Hickman, Plating (East Orange, N. Y.), 1965, 52, 407 Search PubMed.
  5. (a) U. Akbulut, L. Toppare and K. Yurrtas, Polymer, 1986, 27, 803 CrossRef CAS; (b) S. Oswana, M. Ito, K. Tanaka and J. Kuwano, Synthetic Metals, 1987, 18, 145 Search PubMed.
  6. A. J. Bard, Anal. Chem., 1963, 35, 1125 CrossRef CAS.
  7. N. A. Madigan, T. J. Murphy, J. M. Fortune, C. R. S. Hagan and L. A. Coury, Jr., Anal. Chem., 1995, 67, 2781 CrossRef CAS.
  8. H. D. Dewald and B. A. Peterson, Anal. Chem., 1990, 62, 779 CrossRef CAS.
  9. R. G. Compton and F.-M. Matysik, Electroanalysis, 1996, 8, 218 CAS.
  10. (a) J. Klima, C. Bernard and C. Degrand, J. Electroanal. Chem., 1994, 367, 297 CrossRef CAS; (b) P. R. Birkin and S. Silva-Martinez, J. Electroanal. Chem., 1996, 416, 127 CrossRef CAS.
  11. H. Huck, Ber. Bunsenges. Phys. Chem., 1987, 91, 648 Search PubMed.
  12. S. A. Perusich and R. C. Alkire, J. Electrochem. Soc., 1991, 138, 709.
  13. F. Marken, R. P. Akkermans and R. G. Compton, J. Electroanal. Chem., 1996, 415, 55 CrossRef CAS.
  14. T. F. Connors and J. F. Rusling, Chemosphere, 1984, 13, 415 CrossRef CAS.
  15. (a) B. Gautheron, G. Tainturier and C. Degrand, J. Am. Chem. Soc., 1985, 107, 5579 CrossRef CAS; (b) C. Degrand, J. Chem. Soc., Chem. Commun., 1986, 1113 RSC; (c) C. Degrand, R. Prest and P.-L. Compagnon, J. Org. Chem., 1987, 52, 5229 CrossRef CAS; (d) C. Degrand, R. Prest and M. Nour, Phosphorus and Sulfur, 1988, 38, 201 Search PubMed.
  16. (a) T. J. Mason, J. P. Lorimer and D. J. Walton, Ultrasonics, 1990, 28, 333 CrossRef CAS; (b) A. Chyla, J. P. Lorimer, G. Smith and D. J. Walton, J. Chem. Soc., Chem. Commun., 1989, 603 RSC.
  17. (a) K. Matsuda, M. Atobe and T. Nonaka, Chem. Lett., 1994, 1619 CAS; (b) M. Atobe, K. Matsuda and T. Nonaka, Electroanalysis, 1996, 8, 784 CAS and references cited therein.
  18. M. Bordeau, C. Biran, M.-P. Léger-Lambert and J. Dunoguès, J. Chem. Soc., Chem. Commun., 1991, 1476 RSC.
  19. M. Tashiro, H. Tsuzuki, H. Goto and S. Mataka, Chem. Express, 1991, 6, 403 Search PubMed.
  20. (a) A. Durant, J.-L. Delplancke, R. Winand and J. Reisse, Tetrahedron Lett., 1995, 36, 4257 CrossRef CAS; (b) A. Durant, H. Francois, J. Reisse and A. Kirsch-De-Mesmaeker, Electrochim. Acta, 1996, 41, 277 CrossRef CAS.
  21. D. J. Walton and S. S. Phull, Adv. Sonochem., ed., T. J. Mason, JAI Press, 1996, 4, 205 Search PubMed.
  22. (a) C. G. Jung, F. Chapelle and A. Fontana, submitted for publication in Ultrasonics; (b) J. Castillo, C. G. Jung, T. Thiemann and F. Marken, 47th Meeting of the International Society of Electrochemistry, September 1996, Veszprém, Hungary, Abstracts L4b-8 Search PubMed.
  23. (a) Ultrasound: its Chemical, Physical, and Biological Effects, ed. K. S. Suslick, VCH, Weinheim, 1988 Search PubMed; (b) T. G. Leighton, The Acoustic Bubble, Academic Press, London, 1994 Search PubMed.
  24. A. Benahcene, C. Petrier, G. Reverdy and P. Labre, New J. Chem., 1995, 19, 989 Search PubMed.
  25. R. G. Compton, J. C. Eklund, S. D. Page, G. H. W. Sanders and J. Booth, J. Phys. Chem., 1994, 98, 12 410 CrossRef CAS.
  26. T. J. Mason and J. P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood, Chichester, 1988 Search PubMed.
  27. See, for example, P. Colarusso and N. Serpone, Res. Chem. Intermed., 1996, 22, 61 Search PubMed.
  28. E. L. Shapiro and M. J. Gentles, J. Org. Chem., 1981, 46, 5017 CrossRef CAS.
  29. T. Inokuchi, M. Kusumoto and S. Torii, J. Org. Chem., 1990, 55, 1548 CrossRef CAS.
  30. T. Inokuchi, M. Kusumoto, T. Sugimoto, H. Tanaka and S. Torii, Phosphorus, Sulfur, and Silicon, 1992, 67, 271 CAS.
  31. (a) M. A. Margulis and A. N. Mal'tsev, Russ. J. Phys. Chem., 1969, 43, 592 Search PubMed; (b) T. J. Mason, J. P. Lorimer and D. M. Bates, Ultrasonics, 1992, 30, 40 CrossRef CAS.
  32. F. Marken and R. G. Compton, Ultrasonics Sonochemistry, 1996, 3, S131 Search PubMed.
  33. N. Serpone and P. Colarusso, Res. Chem. Intermed., 1994, 20, 635 CAS.
  34. R. G. Compton, J. C. Eklund, S. D. Page and T. O. Rebbitt, J. Chem. Soc., Dalton Trans., 1995, 389 RSC.
  35. See, for example, J. C. Kotz, in Topics in Organic Electrochemistry, eds. A. J. Fry and W. E. Britton, Plenum, New York, 1986 Search PubMed.
  36. R. G. Compton, J. C. Eklund, S. D. Page, T. J. Mason and D. J. Walton, J. Appl. Electrochem., 1996, 26, 775 CrossRef CAS.
  37. R. G. Compton, F. Marken and T. O. Rebbitt, J. Chem. Soc., Chem. Commun., 1996, 1017 RSC.
  38. F. Marken, S. Kumbhat, G. H. W. Sanders and R. G. Compton, J. Electroanal. Chem., 1996, 414, 95 CrossRef CAS.
  39. To a good approximation the diffusion coefficient for ferrocene can be used: R. N. Adams, Electrochemistry at Solid Electrodes, Marcel Dekker, New York, 1969 Search PubMed.
  40. C. H. Robinson and R. Henderson, J. Org. Chem., 1972, 37, 565 CrossRef CAS.
  41. D. N. Kirk and M. L. Sá e Melo, Steroids, 1979, 34, 683 CrossRef CAS.
  42. G. A. Molander and G. Hahn, J. Org. Chem., 1986, 51, 2596 CrossRef CAS.
  43. A. V. Kamernitskii, I. G. Reshetova, E. I. Chernoburova, S. G. Mairanovskii and N. K. Lisitsina, Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 1901 (Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Trans.), 1984, 1736) Search PubMed.
  44. L. Bencharif, A. Robert, A. Tallec and R. Tardivel, Electrochim. Acta, 1992, 37, 1247 CrossRef CAS.
  45. C. R. Wilke and P. Chang, AIChE J., 1955, 1, 264 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.