The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution

(Note: The full text of this document is currently only available in the PDF Version )

Alan M. Bond, Frank Marken, Emma Hill, Richard G. Compton and Helmut Hügel


Abstract

The electrochemical properties of solid materials such as organic compounds, irrespective of their electrical conductivity, can be studied via the use of submicron sized particles mechanically attached to electrode surfaces immersed in aqueous media containing different electrolytes. In this study the reduction of solid indigo in buffered and non-buffered aqueous media has been investigated. Data are compared to those obtained from a voltammetric study of indigo dissolved in dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF[hair space]) and in pyridine and the interpretation of results is facilitated by in situ EPR, in situ UV–VIS spectroscopy and atomic force microscopy (AFM) studies. For the reduction of solid indigo two distinct types of reduction processes, ‘surface-type’ and ‘bulk-type’, have been observed. The latter process has been found to be associated with the reductive dissolution of indigo. The ‘surface-type’ responses which occur in a microphase at the electrode/solid/solution interface are reversible 2H+-2e- reduction and oxidation processes with a corresponding 60 mV shift in half wave potential per pH unit in buffered electrolyte media over the pH range 4 to 11. The ‘bulk-type’ reduction process is proposed to be associated with the electroinsertion of cations into the solid indigo particles, thereby producing a reduced material and causing the loss of material from the electrode surface under convective flow conditions. The electrochemical solubilization of indigo occurred in non-buffered aqueous media even at neutral pH values.


References

  1. A. W. Adamson, Physical Chemistry of Surfaces, 5th edn., Wiley, New York, 1990.
  2. R. J. D. Miller, G. L. McLendon, A. J. Nozik, W. Schmickler and F. Willig, Surface Electron Transfer Processes, VCH, Weinheim, 1995 Search PubMed.
  3. See, for example, J. O'M. Bockris and S. U. M. Khan, Surface Electrochemistry, Plenum Press, New York, 1993 Search PubMed.
  4. J. V. Macpherson and P. R. Unwin, Prog. React. Kin., 1995, 20, 185 Search PubMed.
  5. R. H. Peters, in Textile Chemistry, vol. 3, The Physical Chemistry of Dyeing, Elsevier, Amsterdam, 1975 Search PubMed.
  6. (a) F. R. Latham, in Cellulosics Dyeing, ed. J. Shore, Soc. of Dyers & Colorists, 1995 Search PubMed; (b) U. Baumgarte, Textilvered., 1969, 4, 821 Search PubMed.
  7. (a) T. Bechtold, E. Burtscher, D. Gmeiner and O. Bobleter, J. Electroanal. Chem., 1991, 306, 169 CrossRef CAS; (b) T. Bechtold, E. Burtscher, A. Amann and O. Bobleter, Angew. Chem., Int. Ed. Engl., 1992, 31, 1068 CrossRef.
  8. T. Vickerstaff, The Physical Chemistry of Dyeing, Oliver and Boyd, Edinburgh, 1954 and references cited therein Search PubMed.
  9. K. Y. Tam, R. G. Compton, J. H. Atherton, C. M. Brennan and R. Docherty, J. Am. Chem. Soc., 1996, 118, 4419 CrossRef CAS and references cited therein.
  10. F. Scholz and B. Lange, Chem. Soc. Rev., 1994, 341 RSC.
  11. A. M. Bond and F. Scholz, Langmuir, 1991, 7, 3197 CrossRef CAS.
  12. F. Scholz and B. Lange, Trends Anal. Chem., 1992, 11, 359 CrossRef CAS.
  13. A. M. Bond, R. Colton, F. Daniels, D. R. Fernando, F. Marken, Y. Nagaosa, R. F. M. Van Steveninck and J. N. Walter, J. Am. Chem. Soc., 1993, 115, 9556 CrossRef CAS.
  14. A. M. Bond, S. Fletcher, F. Marken, S. J. Shaw and P. G. Symons, Faraday Trans., 1996, 92, 3925 RSC.
  15. R. G. Compton and A. M. Waller, in Spectroelectrochemistry Theory and Practice, ed. R. J. Gale, Plenum Press, New York, 1988, p. 349f Search PubMed.
  16. M. B. G. Pilkington, B. A. Coles and R. G. Compton, Anal. Chem., 1989, 61, 1787 CrossRef CAS.
  17. G. Beggiato, G. Casalbore-Miceli, A. Geri and D. Pietropaolo, Ann. Chim., 1993, 83, 355 CAS.
  18. (a) L. R. Yeh and A. J. Bard, J. Electroanal. Chem., 1976, 70, 157 CrossRef CAS; (b) L. R. Yeh and A. J. Bard, J. Electroanal. Chem., 1977, 81, 319 CrossRef CAS; (c) L. R. Yeh and A. J. Bard, J. Electroanal. Chem., 1977, 81, 333 CrossRef CAS.
  19. K. S. Schanze, L. Y. C. Lee, C. Gianotti and D. G. Whitten, J. Am. Chem. Soc., 1986, 108, 2646 CrossRef CAS.
  20. M. Shucheng, N. Jianmin, M. Hua and C. Lu, Anal. Lett., 1992, 25, 899 CAS.
  21. J. Fabian and H. Hartman, Light Absorption of Organic Colorants, Springer Verlag, Berlin, 1980, ch. 10 Search PubMed.
  22. A. M. Bond and F. Marken, J. Electroanal. Chem., 1994, 372, 125 CrossRef CAS.
  23. A. M. Bond, J. B. Cooper, F. Marken and D. M. Way, J. Electroanal. Chem., 1995, 396, 407 CrossRef CAS.
  24. J. S. Shaw, F. Marken and A. M. Bond, J. Electroanal. Chem., 1996, 404, 227 CrossRef CAS.
  25. (a) E. A. Gribova, G. S. Zhdanov and G. A. Gol'der, Sov. Phys. Cryst., 1956, 1, 39 Search PubMed; (b) P. Süsse, M. Steins and V. Kupcik, Z. Kristall., 1988, 184, 269 Search PubMed; (c) P. Süsse and A. Wolf, Naturwissenschaften, 1980, 67, 453 CrossRef.
  26. J. N. Etters, J. Soc. Dyers Colour., 1993, 109, 251 Search PubMed.
  27. W. Stumm, Chemistry of the Solid-Water Interface, Wiley, New York, 1992 Search PubMed.
  28. See, for example, J. Heyrovsky and J. Kuta, Principles of Polarography, Academic Press, New York, 1966 Search PubMed.
  29. J. S. Shaw, F. Marken and A. M. Bond, Electroanalysis, 1996, 8, 732.
  30. A. M. Bond, R. Colton, F. Marken and J. N. Walter, Organometallics, 1994, 13, 5122 CrossRef CAS.
  31. See, for example, (a) J. Weinstein and G. M. Wyman, J. Am. Chem. Soc., 1956, 78, 2387 CrossRef CAS; (b) F. Gordon and P. Gregory, Organic Chemistry and Colour, Springer Verlag, Berlin, 1985, p. 208f Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.