The molecular structure of N,N′-diformohydrazide from ab initio studies (MP2 and density functional theory) and FTIR matrix spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Luigi Bencivenni, Stella Nunziante Cesaro, Maurizio Spoliti and Fabio Ramondo


Abstract

The FTIR spectrum of N,N′-diformohydrazide isolated in argon and nitrogen matrices is presented and discussed in terms of normal modes predicted by ab initio calculations. MP2/6-31G* and BLYP/6-31G* methods are applied to calculate vibrational frequencies, IR intensities and isotopic shifts of different structures of the molecule. The number of absorption bands and their frequencies for the isolated molecule differ significantly from those of N,N′-diformohydrazide in the solid state. The conformation of the undistorted molecule is different from the planar structure adopted by the molecule in the crystal and such a conformation change is proposed as the reason for the spectral differences. Ab initio calculations support this assignment and predict the vapour of N,N′-diformohydrazide to be a mixture of conformers.


References

  1. Accurate Molecular Structures: Their Determination and Importance, ed. A. Domenicano and I. Hargittai, International Union of Crystallography and Oxford University Press, Oxford, 1992 Search PubMed.
  2. R. G. Nanni, J. R. Ruble, G. A. Jeffrey and R. K. McMullan, J. Mol. Struct., 1986, 147, 369 CrossRef CAS.
  3. G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees, J. S. Binkley and J. A. Pople, Acta Crystallogr., Sect. B, 1980, 36, 2292 CrossRef.
  4. G. A. Jeffrey, J. R. Ruble and J. H. Yates, J. Am. Chem. Soc., 1984, 106, 1571 CrossRef CAS.
  5. G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees and J. A. Pople, Acta Crystallogr., Sect. B, 1982, 38, 1508 CrossRef.
  6. F. Ramondo and L. Bencivenni, J. Chem. Soc., Perkin Trans. 2, 1995, 1797 RSC.
  7. P. Carmona and R. Lopez, Spectrosc. Lett., 1982, 15, 187 CAS.
  8. K. Yamanouchi, M. Sugie, H. Takeo, C. Matsumura, M. Nakata, T. Nakata and K. Kuchitsu, J. Phys. Chem., 1987, 91, 823 CrossRef CAS.
  9. J. R. Durig and W. C. Harris, J. Chem. Phys., 1971, 55, 1735 CrossRef CAS.
  10. M. Spoliti, F. Ramondo and L. Bencivenni, J. Mol. Struct. (THEOCHEM), 1996, 390, 139 CrossRef.
  11. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  12. J. Florian and B. G. Johnson, J. Chem. Phys., 1994, 98, 3681 CAS.
  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Gaussian Inc., Pittsburgh, PA, 1995.
  14. C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS.
  15. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  16. A. D. Becke, Phys. Rev. B, 1988, 38, 3098 CrossRef CAS.
  17. C. Lee, W. Yang and R. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  18. R. Poirer, R. Kari and I. G. Csizmadia, Handbook of Gaussian Basis Sets, Elsevier, Amsterdam, 1985 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.